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What You Will Learn Today

1. Basic concepts of ordinary differential equations (ODEs) and
initial value problems (IVPs)

« Brief review of ODEs and IVPs
« Motivation for numerical methods to IVPs

2. Introduction to Runge-Kutta methods

« Principles and formulation of Runge-Kutta methods
« Accuracy and stability of Runge-Kutta methods



Why Learn Runge-Kutta Method
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DifferentialEquations.jl

Search docs (Ctrl + /)

ODE Solvers

© Recommended Methods
© Translations from MATLAB/Python/R
© Full List of Methods

Non-autonomous Linear ODE / Lie
Group ODE Solvers

Dynamical, Hamiltonian, and 2nd
Order ODE Solvers

Split ODE Solvers
Steady State Solvers
BVP Solvers

SDE Solvers

SDAE Solvers
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ANALYSIS v MACHINE LEARNING ~  DEVELOPER TOOLS ¥ COMMERCIAL SUPPORT ~

Explicit Runge-Kutta Methods

Euler- The canonical forward Euler method. Fixed timestep only.
Midpoint - The second order midpoint method. Uses embedded Euler method for adaptivity.

Heun - The second order Heun's method. Uses Euler method for

Ralston - The optimized second order midpoint method. Uses embedded Euler method for adaptivity.

RK4 - The canonical Runge-Kutta Order 4 method. Uses a defect control for adaptive stepping using maximum
error over the whole interval.

BS3 - Bogacki-Shampine 3/2 method.

Owrenzen3 - Owren-Zennaro optimized interpolation 3/2 method (free 3rd order interpolant).

OwrenZen4 - Owren-Zennaro optimized interpolation 4/3 method (free 4th order interpolant).

OwrenZen5 - Owren-Zennaro optimized interpolation 5/4 method (free 5th order interpolant).

DP5 - Dormand-Prince's 5/4 Runge-Kutta method. (free 4th order interpolant).

Tsit5 - Tsitouras 5/4 Runge-Kutta method. (free 4th order interpolant).

Anas5(w) - 4th order Runge-Kutta method designed for periodic problems. Requires a periodicity estimate w
which when accurate the method becomes 5th order (and is otherwise 4th order with less error for better
estimates).

FRK65(w=0) - Zero Dissipation Runge-Kutta of 6th order. Takes an optional argument w to for the periodicity
phase, in which case this method results in zero numerical dissipation.

PFRK87 (w=0) - Phase-fitted Runge-Kutta of 8th order. Takes an optional argument w to for the periodicity
phase, in which case this method results in zero numerical dissipation.

RKOB5 - Tsitouras' Runge-Kutta-Oliver 6 stage 5th order method. This method is robust on problems which have
asingularity at t=0.

TanYam? - Tanaka-Yamashita 7 Runge-Kutta method.

DP8 - Hairer's 8/5/3 adaption of the Dormand-Prince Runge-Kutta method. (7th order interpolant).

8/7 R Kutta method.

Feagin10 - Feagin's 10th-order Runge-Kutta method.

TsitPaps - Tsits g



Ordinary Differential Equations



ODEs as Mathematical Models

Mathematical models describe how quantities change.

+ The Logistic Model

v =t [1- %2

« Mass-Spring System
2

m@y(t) + ky(t) = 0.

« Newton’s Law of Cooling

%y(t) =—k [y(t) - yenv] :



Second-Order ODE: Two body problem

Two body problem
Let x;(t) and x2(t) be the positions of two bodies, and m; and mg be their masses. Let

x(t) = x2(t) — x1(t),

Il = V&
d? __G(m1+m2)x
a ="

where G is the gravitational constant.

x is called dependent variable and ¢ is an independent variable. The two body problem
is described by a second-order ODE.



System of ODEs: The Lotka-Volterra predator-prey model

The Lotka-Volterra predator-prey model

d
Eu(t) = au(t) — Bu(t)v(t),
%U(t) = —yo(t) + Sult)u(?),

where u is the population density of the prey, v is the population density of the
predator; a, 3, v, and 6 are model parameters.

u and v are called dependent variables, and t is an independent variable. The
Lotka-Volterra model consists of two coupled, first-order ODEs.



System of ODEs: The Lotka-Volterra predator-prey model

The Lotka-Volterra predator-prey model

Let
o [10] () - Bt
®) [v(t)]’f(t’ ®)) [—w(t)+5u(t)v(t)]

Then, 1
&x(t) = f(t,x(t))



Higher-Order ODEs

An ODE of order n is an equation of the form:
dr d dn—l
0 = 1 (6500 00, 300

We can reduce the ODE of order n into an ODE of order 1. Let

u(t) v )
x(t) = %y@ £(t () = ayl!)
£y 7 (£y), $900), . @) |

Then, the ODE of order n is equivalent to the following:

x(t) = £(t,x(1).

10



Higher-Order ODEs

Consider the second-order ODE given by
d? d
32Y® + ) 7 u(t) +a(t)y(t) = 9(t).

Then, we have

d [y() _ Ly(t)

dt | Ly(t) —p(t) $y(t) — a@)y(t) + g(t)
B 0 1 y(t) n 0
| =a@®) —p®) | | Lyt g(t)| "

11



Initial conditions

Solutions to ODEs are usually not unique due to the appearance of integration
constants.
A simple second-order ODE
d2
@y(t) = a.
Which leads to

1
&y(t) =at+ Cy, y(t) = §at2 + Cot + C1.

This contains two integration constants. Standard practice would be to specify
$9(0) = Cpand y(0) = C4. These are initial conditions.

12



Initial Value Problems

The first-order differential equation for the function y(t) is written as

Sy(t) = £, 9(0), W

where f(t,y(t)) can be any function of the independent variable ¢ and the dependent
variable y.

The differential equation will be considered with an initial condition:

y(to) = Yo- (2)

The differential (1) together with the initial condition (2) is called an initial value
problem.

13



Initial Value Problems

In general, an initial value problem takes the form

{jty(t) = £(t,5())
y(to) = yo,

where

14



Motivation for Numerical Methods in
Ordinary Differential Equations




Motivation for Numerical Methods in ODEs

E+S & gs B pap
ko

Enzyme-Substrate Reaction Models
d d
&S(t) = —k1E(t)S(t) + k2C(¢), aE(lt) = —k1E(t)S(t) + (k2 + k3)C(2),

d

%C(t) =k E(t)S(t) — (ko + k3)C(t), &P(t) = ksC(t),

where S(t), E(t), C(t), and P(t) denote the concentrations of substrate, free enzyme,

enzyme-substrate complex, and product, respectively.

The solutions of the model cannot be expressed in closed form.
15



Motivation for Numerical Methods in ODEs

Method of integrating factors
Afirst-order linear ODE has the form:

d
V() + Pt)y(t) = Q).
The integrating factor is given by
,u(t) _ efP(t) dt

Then, the solution can be written as

) =~ { [ @ e+ C] |

16



Motivation for Numerical Methods in ODEs

Method of integrating factors
1

_JPOAt ey L
u(t) W) = [ [nwau ar+ c] |

Most ODEs do not have solutions expressible in closed form. For example, the following

& 2
/ et dt
a
cannot be evaluated in closed form.
We must rely on numerical methods that produce approximations to the desired

integral

solutions.

17



Numerical Methods for
Initial Value Problems




Purpose of Numerical Methods for IVPs

An IVP for a first-order ODE is given by

Sult) = F(t.9(1), ylto) = .

+ y(t;): the exact solution to the problem at ¢; > ¢,

« y;: the approximate solution at ¢;.

The goal is to compute an approximate solution

yi ~ y(t;).

18



The Euler Method

Initial Value Problem

d

v = f(t.y(@)), y(to) = yo.
The equation of the tangent line of y(t) att = ¢y
is expressed by

g(t) = yo + f(to, yo)(t — to)- (3) Wit
L memsmr i
Ift;1 = tg + his close to ty, we can approximate "’“yl) ! y=9(0)
y(t1) using (3). | g
to t t
y(tl) XYy =Y+ hf(t()v yO) R

This is the Euler method for solving IVPs.
19



The Fundamental Theorem of Calculus

Initial Value Problem

%y(t) = f(t,y(?)), y(to) = yo-

By integrating f(¢,y(t)) from ¢y to ¢ty + h and applying the fundamental theorem of
calculus, we obtain:

to+h
/ £t y(t)) dt = y(to + h) — y(to).

to

20



Methods Based on Numerical Quadratures

The integral form of IVP

to+h
y(to + h) = y(to) + / £t y(t)) dt @)

to

By approximating the integral in (4) using numerical quadrature rules, we can obtain
y(t1) = y1 = yo + hK(h, to, yo)

where

to+h
b = to + hy RE (b, to, o) ~ / F(t,y(8)) dt.
to

The key point is that K (h, tg, yo) depend on yy = y(t), but does not depend on y(¢) for
anyt # to.
21



Examples of Numerical Quadrature Rules

« Midpoint rule:

/abf(z)dm(b—a)f<“;b).

6 —a
[ 1@ ao~ S0 @) + 503

» Trapezoidal rule:

22



Midpoint Rule

The midpoint rule approximates the integral in (4) as

to+h
[ oy as (o 5o ()
to

If we approximate y (¢ + %) using the Euler method, we obtain

h h
y1 =yo + hf <750 S 5740 I 2f(t07y0)) ~

23



Runge’s Method

The midpoint method
Statt
¢)) Ay = f(#y) Az u, s, w. h h
ist es schon viel besser wenn man y1 =yo+ hf (to + 9 Yo + §f(t07 yO)> 0
@ Ay =f(-""o + %A‘”: Yo + %f(wo?lo) Ax)Aw
u, 8. w. q
In practice,
Runge, C. Ueber die numerische Auflosung von .
Differentialgleichungen. Math. Ann. 46, 167-178 1= f(to, o),
h h
(1895) kg = f <t0 + §,yo + 2]431) ’

https://doi.org/10.1007/BF01446807
Y1 = Yo + hka.

24
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Heun’s Method

The trapezoidal rule approximates the integral in (4) as

to+h h
[ o) e 5 (7o ytto)) + Sito + o + W),

to

If we approximate y(¢o + k) using the Euler method, we obtain

kl - f(t07y0)7
ko = f(to + h,yo + hk1),

h
y1:y0+§(k;1—|—k2).

This method is also called the improved Euler method.

25



The Explicit One-Step Methods

An explicit one-step method is a method which, given yq at t; computes a sequence of
approximations y1, . . ., yn to the solution of an IVP at time steps ¢1, ..., ¢ using an
update formula of the form:

y(tn) R UYp = Yn—1 T hnK(hnvtn—la yn—1)7 hn =t —tn_1

forn=1,...,N.
The method is called one-step method because the value y,, explicitly depends only on
thevalue y,—1 and f(tn—1,Yn—1)-

26



The Explicit s-stage Runge-Kutta Methods

The explicit s-stage Runge-Kutta methods are one-step methods that uses s
evaluations of f(t,y(t)) with the representation

i—1
ki=f t0+cih7y0+hzaijkj ,i=1,...,s,
j=1

yi=yo+hy_ biki.
i=1

Note that ¢; = 0.

27



Example: Two-Stage Explicit Runge-Kutta Methods

1. The midpoint method

kl — f(t(]vy())v
h h
ko = 7 — —k
2 f<0+27y0+2 1>,
Y1 = Yo + hks.
2. Heun’s method
kl - f(thy())u

k2 = f(to + hvyO + hkl)v

1 1
y1 =1y +h (le +2]€2> :

28



The Global Error

Let y(¢) be a solution of the IVP

St) = (60, ylto) = 10

on the interval [t0, ]

The global error of the one-step method

en = [y(tn) — ynl-

It is the difference between the solution y(¢ ) of the IVP at ¢ ;v and the result of the
one-step method at ¢ .

29



The Local Error

Let y(t) be a solution of the IVP

) = (60, yto) = 10

on theinterval [t,,—1, t,].

The local error of the one-step method

ey = y(tn) - [Z/(tn—l) + hnK(hm ln—1, y(tn—l))] :

It is the difference between y(¢,,) and the result of the one-step method with the exact
initial value y(t,—1).

30



The Local Error of the Euler Method

We will use the Taylor expansion of y(¢) at ¢. Let

o (to,yo), fy = 8yf( 0,%0), fo = f(to,%o)-

And we will use the following:

fe=

d? d
dt2y( ) ft+fydt (tO) ft+fyf0.

Then,

h2
y(f1)2y0+hf0+?+'“-

y1 = yo + hfo.
Iy = O(h?).

31



The Local Error of the Midpoint Method

We will use the Taylor expansion of y(t) at ty. We have

212
f(to + CLh, Yo + bhf(to, y(to))) = fo + ahft + bhfyfg + a 2h ftt + abh2ftyf0
+ %thnyyfo2 t+-
Then,
h? h3 9 9
y(tl) = Yo + th + ? (ft + fny) + E (ftt + 2ftyf0 + fyyf + fyft + fyfo)
4o
y1="yo +hf <t0 + g,yo + Zf(tmyo))
h? h3

=yo+hfo+ 5 (fi + fufo) + 5 (fue + 2fufo + fuyfo) +---
I =O(h?). »



The Truncation Error

The local error on the interval [t,—1, t,,] is given by

ln - y(tn) - [y(tn—l) + h’rLK(h’TH tn—lv y(tn—l)>] .

The truncation error
The truncation error is the quotient of the local error and h,,, defined as:

OO e T

- 3 hnvtn— ) tn— .
» W ( 1, Y(tn-1))

33



Order of Accuracy of the One-Step Method

The truncation error is on the interval [¢,,_1, t,,] is given by

T l o Y(tn) — y(tn-1) _K

= = — Ry tn1, Y(tn_1)).
I W Py tn—1,y(tn—1))

The one-step method is consistent and has order of accuracy p, if there exists a constant
D independent of h = max,—1, . h, such that

max_|7,| < DhP.
n=1,...,N

34



The Order of Accuracy of the Euler and Midpoint Methods

Let

h= max h,
n=1,...,N
« Euler method: I,, = O(h2)forn=1,...,N.
o = O(hy), n=1,...,N.

max |Tn| < DEulerh
n=L,..,

« Midpoint method: I,, = O(h3) forn =1,..., N.
T =0(Mh2),n=1,...,N.

2
max |7-n| < DMidpointh
n=1,...,N

Note that Dgyier and Diidpoint are independent of h.
35



Order conditions of Explicit Runge-Kutta Methods

The explicit s-stage Runge-Kutta methods are represented as follows:

i—1
ki=f <t0+cz‘h,yo+h2aijkj) ,1=1,...,s,

j=1

yi=yo+h> biki.
i=1
The order conditions derived by using the followings:
2

f = Fu), T3u) = fo+ Fyg(®) = fi + ol

212

2

F(to + ah, yo + bhf(to, y(to))) = fo + ahfs + bhfyfo + —— fur + abh2fuy fo

1
N I
36



Order conditions of Explicit Runge-Kutta Methods

o Order1l .
k-
=1
« Order2 .
> b=
=il
« Order3
s 1 s
b =1, Y bage; =
i=1 gog=il
o Order4
5 1 s s s
szc? = Zv Z bzazjcjz = 727 Z bia’lja’jk‘ck‘ o1’ Z szzaz]C] S
1=1 7/7.771 17]71{3:1 27]:1
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Third- and Fourth-Order Runge-Kutta Methods

Kutta’s third-order method

kl = f(t07y0)a
h h
= ¢ i iy
ko f<0+2,y0+2 1)7
ks = f (to + h, yo — hky + 2hks),

h
y1:yo+g(k:1+4k:2+k3).

The Runge-Kutta method

kl — f(t07y0))

h h
ko = t = —k
2 f<0+27y0+21>,

h h
= — —k
ky = f(to + h,yo + hk3),

h
y1:y0+g(k1—|—2k2+2k:3+k:4).
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