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Learning Objectives



What You Will Learn Today

1. Basic concepts of ordinary differential equations (ODEs) and
initial value problems (IVPs)

• Brief review of ODEs and IVPs
• Motivation for numerical methods to IVPs

2. Introduction to Runge–Kutta methods
• Principles and formulation of Runge–Kutta methods
• Accuracy and stability of Runge–Kutta methods
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Why Learn Runge–Kutta Methods?
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Ordinary Differential Equations



ODEs as Mathematical Models

Mathematical models describe how quantities change.

• The Logistic Model
d

dt
y(t) = ry(t)

[
1− y(t)

K

]
.

• Mass–Spring System

m
d2

dt2
y(t) + ky(t) = 0.

• Newton’s Law of Cooling

d

dt
y(t) = −k [y(t)− yenv] .

• . . .
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Second-Order ODE: Two body problem

Two body problem
Let x1(t) and x2(t) be the positions of two bodies, and m1 and m2 be their masses. Let

x(t) = x2(t)− x1(t),

∥x∥ =
√
x · x.

d2

dt2
x(t) = −G (m1 +m2)

∥x(t)∥3
x(t),

where G is the gravitational constant.

x is called dependent variable and t is an independent variable. The two body problem
is described by a second-order ODE.
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System of ODEs: The Lotka–Volterra predator–prey model

The Lotka–Volterra predator–prey model

d

dt
u(t) = αu(t)− βu(t)v(t),

d

dt
v(t) = −γv(t) + δu(t)v(t),

where u is the population density of the prey, v is the population density of the
predator; α, β, γ, and δ are model parameters.

u and v are called dependent variables, and t is an independent variable. The
Lotka–Volterra model consists of two coupled, first-order ODEs.
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System of ODEs: The Lotka–Volterra predator–prey model

The Lotka–Volterra predator–prey model
Let

x(t) =

[
u(t)

v(t)

]
, f(t,x(t)) =

[
αu(t)− βu(t)v(t)

−γv(t) + δu(t)v(t)

]
Then,

d

dt
x(t) = f(t,x(t))
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Higher-Order ODEs

An ODE of order n is an equation of the form:
dn

dtn
y(t) = f

(
t, y(t),

d

dt
y(t), . . . ,

dn−1

dtn−1
y(t)

)
.

We can reduce the ODE of order n into an ODE of order 1. Let

x(t) =


y(t)
d
dty(t)

...
dn−1

dtn−1 y(t)

 , f(t,x(t)) =


d
dty(t)
d2

dt2
y(t)
...

f
(
t, y(t), d

dty(t), . . . ,
dn−1

dtn−1 y(t)
)

 .

Then, the ODE of order n is equivalent to the following:
d

dt
x(t) = f(t,x(t)).
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Higher-Order ODEs

Consider the second-order ODE given by

d2

dt2
y(t) + p(t)

d

dt
y(t) + q(t)y(t) = g(t).

Then, we have

d

dt

[
y(t)
d
dty(t)

]
=

[
d
dty(t)

−p(t) d
dty(t)− q(t)y(t) + g(t)

]

=

[
0 1

−q(t) −p(t)

][
y(t)
d
dty(t)

]
+

[
0

g(t)

]
.
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Initial conditions

Solutions to ODEs are usually not unique due to the appearance of integration
constants.
A simple second-order ODE

d2

dt2
y(t) = a.

Which leads to
d

dt
y(t) = at+ C0, y(t) =

1

2
at2 + C0t+ C1.

This contains two integration constants. Standard practice would be to specify
d
dty(0) = C0 and y(0) = C1. These are initial conditions.
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Initial Value Problems

The first-order differential equation for the function y(t) is written as

d

dt
y(t) = f(t, y(t)), (1)

where f(t, y(t)) can be any function of the independent variable t and the dependent
variable y.

The differential equation will be considered with an initial condition:

y(t0) = y0. (2)

The differential (1) together with the initial condition (2) is called an initial value
problem.
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Initial Value Problems

In general, an initial value problem takes the form
d

dt
y(t) = f(t,y(t)),

y(t0) = y0,

where

d

dt
y(t) =

d

dt


y1(t)

y2(t)
...

yn(t)

 =


f1(t,y(t))

f2(t,y(t))
...

fn(t,y(t))

 .
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Motivation for Numerical Methods in
Ordinary Differential Equations



Motivation for Numerical Methods in ODEs

E + S
k1−⇀↽−
k2

ES
k3−→ E + P

Enzyme–Substrate Reaction Models

d

dt
S(t) = −k1E(t)S(t) + k2C(t),

d

dt
E(t) = −k1E(t)S(t) + (k2 + k3)C(t),

d

dt
C(t) = k1E(t)S(t)− (k2 + k3)C(t),

d

dt
P (t) = k3C(t),

where S(t), E(t), C(t), and P (t) denote the concentrations of substrate, free enzyme,
enzyme–substrate complex, and product, respectively.

The solutions of the model cannot be expressed in closed form.
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Motivation for Numerical Methods in ODEs

Method of integrating factors
A first-order linear ODE has the form:

d

dt
y(t) + P (t)y(t) = Q(t).

The integrating factor is given by

µ(t) = e
∫
P (t) dt.

Then, the solution can be written as

y(t) =
1

µ(t)

[∫
µ(t)Q(t) dt+ C

]
.
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Motivation for Numerical Methods in ODEs

Method of integrating factors

µ(t) = e
∫
P (t) dt, y(t) =

1

µ(t)

[∫
µ(t)Q(t) dt+ C

]
.

Most ODEs do not have solutions expressible in closed form. For example, the following
integral ∫ b

a
e−t2 dt

cannot be evaluated in closed form.
We must rely on numerical methods that produce approximations to the desired
solutions.
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Numerical Methods for
Initial Value Problems



Purpose of Numerical Methods for IVPs

An IVP for a first-order ODE is given by

d

dt
y(t) = f(t, y(t)), y(t0) = y0.

• y(tj): the exact solution to the problem at tj > t0,
• yj : the approximate solution at tj .

The goal is to compute an approximate solution

yj ≈ y(tj).
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The Euler Method

Initial Value Problem
d

dt
y(t) = f(t, y(t)), y(t0) = y0.

The equation of the tangent line of y(t) at t = t0

is expressed by

ŷ(t) = y0 + f(t0, y0)(t− t0). (3)

If t1 = t0 + h is close to t0, we can approximate
y(t1) using (3).

y(t1) ≈ y1 = y0 + hf(t0, y0).

This is the Euler method for solving IVPs.
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The Fundamental Theorem of Calculus

Initial Value Problem
d

dt
y(t) = f(t, y(t)), y(t0) = y0.

By integrating f(t, y(t)) from t0 to t0 + h and applying the fundamental theorem of
calculus, we obtain: ∫ t0+h

t0

f(t, y(t)) dt = y(t0 + h)− y(t0).
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Methods Based on Numerical Quadratures

The integral form of IVP

y(t0 + h) = y(t0) +

∫ t0+h

t0

f(t, y(t)) dt (4)

By approximating the integral in (4) using numerical quadrature rules, we can obtain

y(t1) ≈ y1 = y0 + hK(h, t0, y0)

where
t1 = t0 + h, hK(h, t0, y0) ≈

∫ t0+h

t0

f(t, y(t)) dt.

The key point is that K(h, t0, y0) depend on y0 = y(t0), but does not depend on y(t) for
any t ̸= t0.
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Examples of Numerical Quadrature Rules

• Midpoint rule: ∫ b

a
f(x) dx ≈ (b− a)f

(
a+ b

2

)
.

• Trapezoidal rule: ∫ b

a
f(x) dx ≈ (b− a)

2
[f(a) + f(b)] .

• Simpson’s rule:∫ b

a
f(x) dx ≈ (b− a)

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
.
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Midpoint Rule

The midpoint rule approximates the integral in (4) as∫ t0+h

t0

f(t, y(t)) dt ≈ hf

(
t0 +

h

2
, y

(
t0 +

h

2

))
.

If we approximate y
(
t0 +

h
2

)
using the Euler method, we obtain

y1 = y0 + hf

(
t0 +

h

2
, y0 +

h

2
f(t0, y0)

)
.

23



Runge’s Method

Runge, C. Ueber die numerische Auflösung von
Differentialgleichungen. Math. Ann. 46, 167–178
(1895).
https://doi.org/10.1007/BF01446807

The midpoint method

y1 = y0 + hf

(
t0 +

h

2
, y0 +

h

2
f(t0, y0)

)
.

In practice,

k1 = f(t0, y0),

k2 = f

(
t0 +

h

2
, y0 +

h

2
k1

)
,

y1 = y0 + hk2.
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Heun’s Method

The trapezoidal rule approximates the integral in (4) as∫ t0+h

t0

f(t, y(t)) dt ≈ h

2
[f(t0, y(t0)) + f(t0 + h, y(t0 + h))] .

If we approximate y(t0 + h) using the Euler method, we obtain

k1 = f(t0, y0),

k2 = f(t0 + h, y0 + hk1),

y1 = y0 +
h

2
(k1 + k2) .

This method is also called the improved Euler method.
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The Explicit One-Step Methods

An explicit one-step method is a method which, given y0 at t0 computes a sequence of
approximations y1, . . . , yN to the solution of an IVP at time steps t1, . . . , tN using an
update formula of the form:

y(tn) ≈ yn = yn−1 + hnK(hn, tn−1, yn−1), hn = tn − tn−1

for n = 1, . . . , N .
The method is called one-step method because the value yn explicitly depends only on
the value yn−1 and f(tn−1, yn−1).
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The Explicit s-stage Runge–Kutta Methods

The explicit s-stage Runge–Kutta methods are one-step methods that uses s
evaluations of f(t, y(t)) with the representation

ki = f

t0 + cih, y0 + h

i−1∑
j=1

aijkj

 , i = 1, . . . , s,

y1 = y0 + h
s∑

i=1

biki.

Note that c1 = 0.
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Example: Two-Stage Explicit Runge–Kutta Methods

1. The midpoint method

k1 = f(t0, y0),

k2 = f

(
t0 +

h

2
, y0 +

h

2
k1

)
,

y1 = y0 + hk2.

2. Heun’s method

k1 = f(t0, y0),

k2 = f(t0 + h, y0 + hk1),

y1 = y0 + h

(
1

2
k1 +

1

2
k2

)
.
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The Global Error

Let y(t) be a solution of the IVP

d

dt
y(t) = f(t, y(t)), y(t0) = y0

on the interval [t0, tN ].

The global error of the one-step method

eN = |y(tN )− yN |.

It is the difference between the solution y(tN ) of the IVP at tN and the result of the
one-step method at tN .
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The Local Error

Let y(t) be a solution of the IVP

d

dt
y(t) = f(t, y(t)), y(t0) = y0

on the interval [tn−1, tn].

The local error of the one-step method

ln = y(tn)− [y(tn−1) + hnK(hn, tn−1, y(tn−1))] .

It is the difference between y(tn) and the result of the one-step method with the exact
initial value y(tn−1).
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The Local Error of the Euler Method

We will use the Taylor expansion of y(t) at t0. Let

ft =
∂

∂t
f(t0, y0), fy =

∂

∂y
f(t0, y0), f0 = f(t0, y0).

And we will use the following:

d2

dt2
y(t0) = ft + fy

d

dt
y(t0) = ft + fyf0.

Then,

y(t1) = y0 + hf0 +
h2

2
+ · · · .

y1 = y0 + hf0.

l1 = O(h2).
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The Local Error of the Midpoint Method

We will use the Taylor expansion of y(t) at t0. We have

f(t0 + ah, y0 + bhf(t0, y(t0))) = f0 + ahft + bhfyf0 +
a2h2

2
ftt + abh2ftyf0

+
1

2
b2h2fyyf

2
0 + · · ·

Then,

y(t1) = y0 + hf0 +
h2

2
(ft + fyf0) +

h3

6

(
ftt + 2ftyf0 + fyyf

2 + fyft + f2
y f0

)
+ · · · .

y1 = y0 + hf

(
t0 +

h

2
, y0 +

h

2
f(t0, y0)

)
= y0 + hf0 +

h2

2
(ft + fyf0) +

h3

8

(
ftt + 2ftyf0 + fyyf

2
0

)
+ · · · .

l1 = O(h3). 32



The Truncation Error

The local error on the interval [tn−1, tn] is given by

ln = y(tn)− [y(tn−1) + hnK(hn, tn−1, y(tn−1))] .

The truncation error
The truncation error is the quotient of the local error and hn, defined as:

τn =
ln
hn

=
y(tn)− y(tn−1)

hn
−K(hn, tn−1, y(tn−1)).
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Order of Accuracy of the One-Step Method

The truncation error is on the interval [tn−1, tn] is given by

τn =
ln
hn

=
y(tn)− y(tn−1)

hn
−K(hn, tn−1, y(tn−1)).

The one-step method is consistent and has order of accuracy p, if there exists a constant
D independent of h = maxn=1,...,N hn such that

max
n=1,...,N

|τn| ≤ Dhp.

34



The Order of Accuracy of the Euler and Midpoint Methods

Let
h = max

n=1,...,N
hn

• Euler method: ln = O(h2n) for n = 1, . . . , N .

τn = O(hn), n = 1, . . . , N.

max
n=1,...,N

|τn| ≤ DEulerh

• Midpoint method: ln = O(h3n) for n = 1, . . . , N .

τn = O(h2n), n = 1, . . . , N.

max
n=1,...,N

|τn| ≤ DMidpointh
2

Note that DEuler and DMidpoint are independent of h.
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Order conditions of Explicit Runge–Kutta Methods

The explicit s-stage Runge–Kutta methods are represented as follows:

ki = f

t0 + cih, y0 + h

i−1∑
j=1

aijkj

 , i = 1, . . . , s,

y1 = y0 + h

s∑
i=1

biki.

The order conditions derived by using the followings:

f = f(t, y(t)),
d2

dt2
y(t) = ft + fy

d

dt
y(t) = ft + fyf.

f(t0 + ah, y0 + bhf(t0, y(t0))) = f0 + ahft + bhfyf0 +
a2h2

2
ftt + abh2ftyf0

+
1

2
b2h2fyyf

2
0 + · · · .
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Order conditions of Explicit Runge–Kutta Methods

• Order 1
s∑

i=1

bi = 1.

• Order 2
s∑

i=1

bici =
1

2
.

• Order 3
s∑

i=1

bic
2
i =

1

3
,

s∑
i,j=1

biaijcj =
1

6
.

• Order 4
s∑

i=1

bic
3
i =

1

4
,

s∑
i,j=1

biaijc
2
j =

1

12
,

s∑
i,j,k=1

biaijajkck =
1

24
,

s∑
i,j=1

biciaijcj =
1

8
.
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Third- and Fourth-Order Runge–Kutta Methods

Kutta’s third-order method

k1 = f(t0, y0),

k2 = f

(
t0 +

h

2
, y0 +

h

2
k1

)
,

k3 = f (t0 + h, y0 − hk1 + 2hk2) ,

y1 = y0 +
h

6
(k1 + 4k2 + k3) .

The Runge–Kutta method

k1 = f(t0, y0),

k2 = f

(
t0 +

h

2
, y0 +

h

2
k1

)
,

k3 = f

(
t0 +

h

2
, y0 +

h

2
k2

)
,

k4 = f(t0 + h, y0 + hk3),

y1 = y0 +
h

6
(k1 + 2k2 + 2k3 + k4) .
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