
Numerical Methods for Ordinary Differential Equations:
Initial Value Problems

LIM, Roktaek
Ulsan National Institute of Science and Technology

2026 Winter School on Numerical Relativity and Gravitational Waves

Learning Objectives

What You Will Learn Today

1. Basic concepts of ordinary differential equations (ODEs) and
initial value problems (IVPs)

• Brief review of ODEs and IVPs
• Motivation for numerical methods to IVPs

2. Introduction to Runge–Kutta methods
• Principles and formulation of Runge–Kutta methods
• Accuracy and stability of Runge–Kutta methods

1

Why Learn Runge–Kutta Methods?

2

Why Learn Runge–Kutta Methods?

3

Why Learn Runge–Kutta Methods?

4

Why Learn Runge–Kutta Methods?

5

Ordinary Differential Equations

ODEs as Mathematical Models

Mathematical models describe how quantities change.

• The Logistic Model
d

dt
y(t) = ry(t)

[
1− y(t)

K

]
.

• Mass–Spring System

m
d2

dt2
y(t) + ky(t) = 0.

• Newton’s Law of Cooling

d

dt
y(t) = −k [y(t)− yenv] .

• . . .

6

Second-Order ODE: Two body problem

Two body problem
Let x1(t) and x2(t) be the positions of two bodies, and m1 and m2 be their masses. Let

x(t) = x2(t)− x1(t),

∥x∥ =
√
x · x.

d2

dt2
x(t) = −G (m1 +m2)

∥x(t)∥3
x(t),

where G is the gravitational constant.

x is called dependent variable and t is an independent variable. The two body problem
is described by a second-order ODE.

7

System of ODEs: The Lotka–Volterra predator–prey model

The Lotka–Volterra predator–prey model

d

dt
u(t) = αu(t)− βu(t)v(t),

d

dt
v(t) = −γv(t) + δu(t)v(t),

where u is the population density of the prey, v is the population density of the
predator; α, β, γ, and δ are model parameters.

u and v are called dependent variables, and t is an independent variable. The
Lotka–Volterra model consists of two coupled, first-order ODEs.

8

System of ODEs: The Lotka–Volterra predator–prey model

The Lotka–Volterra predator–prey model
Let

x(t) =

[
u(t)

v(t)

]
, f(t,x(t)) =

[
αu(t)− βu(t)v(t)

−γv(t) + δu(t)v(t)

]
Then,

d

dt
x(t) = f(t,x(t))

9

Higher-Order ODEs

An ODE of order n is an equation of the form:
dn

dtn
y(t) = f

(
t, y(t),

d

dt
y(t), . . . ,

dn−1

dtn−1
y(t)

)
.

We can reduce the ODE of order n into an ODE of order 1. Let

x(t) =


y(t)
d
dty(t)

...
dn−1

dtn−1 y(t)

 , f(t,x(t)) =


d
dty(t)
d2

dt2
y(t)
...

f
(
t, y(t), d

dty(t), . . . ,
dn−1

dtn−1 y(t)
)

 .

Then, the ODE of order n is equivalent to the following:
d

dt
x(t) = f(t,x(t)).

10

Higher-Order ODEs

Consider the second-order ODE given by

d2

dt2
y(t) + p(t)

d

dt
y(t) + q(t)y(t) = g(t).

Then, we have

d

dt

[
y(t)
d
dty(t)

]
=

[
d
dty(t)

−p(t) d
dty(t)− q(t)y(t) + g(t)

]

=

[
0 1

−q(t) −p(t)

][
y(t)
d
dty(t)

]
+

[
0

g(t)

]
.

11

Initial conditions

Solutions to ODEs are usually not unique due to the appearance of integration
constants.
A simple second-order ODE

d2

dt2
y(t) = a.

Which leads to
d

dt
y(t) = at+ C0, y(t) =

1

2
at2 + C0t+ C1.

This contains two integration constants. Standard practice would be to specify
d
dty(0) = C0 and y(0) = C1. These are initial conditions.

12

Initial Value Problems

The first-order differential equation for the function y(t) is written as

d

dt
y(t) = f(t, y(t)), (1)

where f(t, y(t)) can be any function of the independent variable t and the dependent
variable y.

The differential equation will be considered with an initial condition:

y(t0) = y0. (2)

The differential (1) together with the initial condition (2) is called an initial value
problem.

13

Initial Value Problems

In general, an initial value problem takes the form
d

dt
y(t) = f(t,y(t)),

y(t0) = y0,

where

d

dt
y(t) =

d

dt


y1(t)

y2(t)
...

yn(t)

 =


f1(t,y(t))

f2(t,y(t))
...

fn(t,y(t))

 .

14

Motivation for Numerical Methods in
Ordinary Differential Equations

Motivation for Numerical Methods in ODEs

E + S
k1−⇀↽−
k2

ES
k3−→ E + P

Enzyme–Substrate Reaction Models

d

dt
S(t) = −k1E(t)S(t) + k2C(t),

d

dt
E(t) = −k1E(t)S(t) + (k2 + k3)C(t),

d

dt
C(t) = k1E(t)S(t)− (k2 + k3)C(t),

d

dt
P (t) = k3C(t),

where S(t), E(t), C(t), and P (t) denote the concentrations of substrate, free enzyme,
enzyme–substrate complex, and product, respectively.

The solutions of the model cannot be expressed in closed form.

15

Motivation for Numerical Methods in ODEs

Method of integrating factors
A first-order linear ODE has the form:

d

dt
y(t) + P (t)y(t) = Q(t).

The integrating factor is given by

µ(t) = e
∫
P (t) dt.

Then, the solution can be written as

y(t) =
1

µ(t)

[∫
µ(t)Q(t) dt+ C

]
.

16

Motivation for Numerical Methods in ODEs

Method of integrating factors

µ(t) = e
∫
P (t) dt, y(t) =

1

µ(t)

[∫
µ(t)Q(t) dt+ C

]
.

Most ODEs do not have solutions expressible in closed form. For example, the following
integral ∫ b

a
e−t2 dt

cannot be evaluated in closed form.
We must rely on numerical methods that produce approximations to the desired
solutions.

17

Numerical Methods for
Initial Value Problems

Purpose of Numerical Methods for IVPs

An IVP for a first-order ODE is given by

d

dt
y(t) = f(t, y(t)), y(t0) = y0.

• y(tj): the exact solution to the problem at tj > t0,
• yj : the approximate solution at tj .

The goal is to compute an approximate solution

yj ≈ y(tj).

18

The Euler Method

Initial Value Problem
d

dt
y(t) = f(t, y(t)), y(t0) = y0.

The equation of the tangent line of y(t) at t = t0

is expressed by

ŷ(t) = y0 + f(t0, y0)(t− t0). (3)

If t1 = t0 + h is close to t0, we can approximate
y(t1) using (3).

y(t1) ≈ y1 = y0 + hf(t0, y0).

This is the Euler method for solving IVPs.
19

The Fundamental Theorem of Calculus

Initial Value Problem
d

dt
y(t) = f(t, y(t)), y(t0) = y0.

By integrating f(t, y(t)) from t0 to t0 + h and applying the fundamental theorem of
calculus, we obtain: ∫ t0+h

t0

f(t, y(t)) dt = y(t0 + h)− y(t0).

20

Methods Based on Numerical Quadratures

The integral form of IVP

y(t0 + h) = y(t0) +

∫ t0+h

t0

f(t, y(t)) dt (4)

By approximating the integral in (4) using numerical quadrature rules, we can obtain

y(t1) ≈ y1 = y0 + hK(h, t0, y0)

where
t1 = t0 + h, hK(h, t0, y0) ≈

∫ t0+h

t0

f(t, y(t)) dt.

The key point is that K(h, t0, y0) depend on y0 = y(t0), but does not depend on y(t) for
any t ̸= t0.

21

Examples of Numerical Quadrature Rules

• Midpoint rule: ∫ b

a
f(x) dx ≈ (b− a)f

(
a+ b

2

)
.

• Trapezoidal rule: ∫ b

a
f(x) dx ≈ (b− a)

2
[f(a) + f(b)] .

• Simpson’s rule:∫ b

a
f(x) dx ≈ (b− a)

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
.

22

Midpoint Rule

The midpoint rule approximates the integral in (4) as∫ t0+h

t0

f(t, y(t)) dt ≈ hf

(
t0 +

h

2
, y

(
t0 +

h

2

))
.

If we approximate y
(
t0 +

h
2

)
using the Euler method, we obtain

y1 = y0 + hf

(
t0 +

h

2
, y0 +

h

2
f(t0, y0)

)
.

23

Runge’s Method

Runge, C. Ueber die numerische Auflösung von
Differentialgleichungen. Math. Ann. 46, 167–178
(1895).
https://doi.org/10.1007/BF01446807

The midpoint method

y1 = y0 + hf

(
t0 +

h

2
, y0 +

h

2
f(t0, y0)

)
.

In practice,

k1 = f(t0, y0),

k2 = f

(
t0 +

h

2
, y0 +

h

2
k1

)
,

y1 = y0 + hk2.

24

https://doi.org/10.1007/BF01446807

Heun’s Method

The trapezoidal rule approximates the integral in (4) as∫ t0+h

t0

f(t, y(t)) dt ≈ h

2
[f(t0, y(t0)) + f(t0 + h, y(t0 + h))] .

If we approximate y(t0 + h) using the Euler method, we obtain

k1 = f(t0, y0),

k2 = f(t0 + h, y0 + hk1),

y1 = y0 +
h

2
(k1 + k2) .

This method is also called the improved Euler method.

25

The Explicit One-Step Methods

An explicit one-step method is a method which, given y0 at t0 computes a sequence of
approximations y1, . . . , yN to the solution of an IVP at time steps t1, . . . , tN using an
update formula of the form:

y(tn) ≈ yn = yn−1 + hnK(hn, tn−1, yn−1), hn = tn − tn−1

for n = 1, . . . , N .
The method is called one-step method because the value yn explicitly depends only on
the value yn−1 and f(tn−1, yn−1).

26

The Explicit s-stage Runge–Kutta Methods

The explicit s-stage Runge–Kutta methods are one-step methods that uses s
evaluations of f(t, y(t)) with the representation

ki = f

t0 + cih, y0 + h

i−1∑
j=1

aijkj

 , i = 1, . . . , s,

y1 = y0 + h
s∑

i=1

biki.

Note that c1 = 0.

27

Example: Two-Stage Explicit Runge–Kutta Methods

1. The midpoint method

k1 = f(t0, y0),

k2 = f

(
t0 +

h

2
, y0 +

h

2
k1

)
,

y1 = y0 + hk2.

2. Heun’s method

k1 = f(t0, y0),

k2 = f(t0 + h, y0 + hk1),

y1 = y0 + h

(
1

2
k1 +

1

2
k2

)
.

28

The Global Error

Let y(t) be a solution of the IVP

d

dt
y(t) = f(t, y(t)), y(t0) = y0

on the interval [t0, tN].

The global error of the one-step method

eN = |y(tN)− yN |.

It is the difference between the solution y(tN) of the IVP at tN and the result of the
one-step method at tN .

29

The Local Error

Let y(t) be a solution of the IVP

d

dt
y(t) = f(t, y(t)), y(t0) = y0

on the interval [tn−1, tn].

The local error of the one-step method

ln = y(tn)− [y(tn−1) + hnK(hn, tn−1, y(tn−1))] .

It is the difference between y(tn) and the result of the one-step method with the exact
initial value y(tn−1).

30

The Local Error of the Euler Method

We will use the Taylor expansion of y(t) at t0. Let

ft =
∂

∂t
f(t0, y0), fy =

∂

∂y
f(t0, y0), f0 = f(t0, y0).

And we will use the following:

d2

dt2
y(t0) = ft + fy

d

dt
y(t0) = ft + fyf0.

Then,

y(t1) = y0 + hf0 +
h2

2
+ · · · .

y1 = y0 + hf0.

l1 = O(h2).

31

The Local Error of the Midpoint Method

We will use the Taylor expansion of y(t) at t0. We have

f(t0 + ah, y0 + bhf(t0, y(t0))) = f0 + ahft + bhfyf0 +
a2h2

2
ftt + abh2ftyf0

+
1

2
b2h2fyyf

2
0 + · · ·

Then,

y(t1) = y0 + hf0 +
h2

2
(ft + fyf0) +

h3

6

(
ftt + 2ftyf0 + fyyf

2 + fyft + f2
y f0

)
+ · · · .

y1 = y0 + hf

(
t0 +

h

2
, y0 +

h

2
f(t0, y0)

)
= y0 + hf0 +

h2

2
(ft + fyf0) +

h3

8

(
ftt + 2ftyf0 + fyyf

2
0

)
+ · · · .

l1 = O(h3). 32

The Truncation Error

The local error on the interval [tn−1, tn] is given by

ln = y(tn)− [y(tn−1) + hnK(hn, tn−1, y(tn−1))] .

The truncation error
The truncation error is the quotient of the local error and hn, defined as:

τn =
ln
hn

=
y(tn)− y(tn−1)

hn
−K(hn, tn−1, y(tn−1)).

33

Order of Accuracy of the One-Step Method

The truncation error is on the interval [tn−1, tn] is given by

τn =
ln
hn

=
y(tn)− y(tn−1)

hn
−K(hn, tn−1, y(tn−1)).

The one-step method is consistent and has order of accuracy p, if there exists a constant
D independent of h = maxn=1,...,N hn such that

max
n=1,...,N

|τn| ≤ Dhp.

34

The Order of Accuracy of the Euler and Midpoint Methods

Let
h = max

n=1,...,N
hn

• Euler method: ln = O(h2n) for n = 1, . . . , N .

τn = O(hn), n = 1, . . . , N.

max
n=1,...,N

|τn| ≤ DEulerh

• Midpoint method: ln = O(h3n) for n = 1, . . . , N .

τn = O(h2n), n = 1, . . . , N.

max
n=1,...,N

|τn| ≤ DMidpointh
2

Note that DEuler and DMidpoint are independent of h.
35

Order conditions of Explicit Runge–Kutta Methods

The explicit s-stage Runge–Kutta methods are represented as follows:

ki = f

t0 + cih, y0 + h

i−1∑
j=1

aijkj

 , i = 1, . . . , s,

y1 = y0 + h

s∑
i=1

biki.

The order conditions derived by using the followings:

f = f(t, y(t)),
d2

dt2
y(t) = ft + fy

d

dt
y(t) = ft + fyf.

f(t0 + ah, y0 + bhf(t0, y(t0))) = f0 + ahft + bhfyf0 +
a2h2

2
ftt + abh2ftyf0

+
1

2
b2h2fyyf

2
0 + · · · .

36

Order conditions of Explicit Runge–Kutta Methods

• Order 1
s∑

i=1

bi = 1.

• Order 2
s∑

i=1

bici =
1

2
.

• Order 3
s∑

i=1

bic
2
i =

1

3
,

s∑
i,j=1

biaijcj =
1

6
.

• Order 4
s∑

i=1

bic
3
i =

1

4
,

s∑
i,j=1

biaijc
2
j =

1

12
,

s∑
i,j,k=1

biaijajkck =
1

24
,

s∑
i,j=1

biciaijcj =
1

8
.

37

Third- and Fourth-Order Runge–Kutta Methods

Kutta’s third-order method

k1 = f(t0, y0),

k2 = f

(
t0 +

h

2
, y0 +

h

2
k1

)
,

k3 = f (t0 + h, y0 − hk1 + 2hk2) ,

y1 = y0 +
h

6
(k1 + 4k2 + k3) .

The Runge–Kutta method

k1 = f(t0, y0),

k2 = f

(
t0 +

h

2
, y0 +

h

2
k1

)
,

k3 = f

(
t0 +

h

2
, y0 +

h

2
k2

)
,

k4 = f(t0 + h, y0 + hk3),

y1 = y0 +
h

6
(k1 + 2k2 + 2k3 + k4) .

38

	Objectives
	ODEs
	MotiveNM
	NMIVPs

