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문제
이번실습의모든문제는 r̂ = [0, 1]구간을총 1001개의 그리드포인트(시작점과끝점포함)로 나누어계산한다. 따라

서그리드간격은 ∆r = 1.0× 10−3이다. 중성자별의중심밀도는명시되지않은경우 ρc = 1.28× 10−3를사용한다.

1. 섹션 4 및 중성자별내부구조을참고하여아래변수에해당하는별의구조를계산하라. (배점: 10 점)

• 폴리트로픽상수: K = 1.00× 102

• 폴리트로픽인덱스: n = 0.8, 1, 1.5

(1) CODE 출력파일형식 (problem1.dat))
- 첫 번째 행: n, 수렴한 질량, 수렴한반지름
- 두 번째행부터 2개의열로구성 - 첫 번째열: r̂, 두 번째 열: h

(2) PDF 각 n에대해반지름에따른밀도를계산한뒤, 이를 하나의그림에겹쳐서나타내라 (x-축: r̂, y-축: ρ).
그리고 n의변화에따라나타나는경향성을분석하여기술하라.

(3) PDF (n = 0.8,K = 500), (n = 1,K = 50), (n = 1.5,K = 5.0)의 3개의 상태방정식에 대해 ρc를 바꿔
가며질량과반지름을계산한뒤, 질량-반지름곡선를그려라 (x-축: Rs, y-축: M ).
ρc의범위는별의표면에서의탈출속도가광속을넘어가는지점까지로한다.

2. 섹션 4 방사형진동을참고하여아래변수에해당하는별에서방사형진동의기본진동모드및 1–2차 배음모드를
계산하라. (배점: 15 점)

• 폴리트로픽상수: K = 3.00

• 폴리트로픽인덱스: n =
√
3

(1) PDF 임의의 n에대하여연속방정식, 오일러방정식과상태방정식에섭동을가한뒤, ξr와 δh에대하여정리
하라(최종적으로 2개의식이나와야한다).

(2) CODE 출력파일형식 (problem2.dat))
- 첫 번째 행: 배경 별의질량, 배경 별의반지름, 수렴한진동모드의각진동수 ω

- 두 번째행부터 2개의열로구성 - 첫 번째열: r̂, 두 번째 열: ξ̂, 세 번째 열: δh
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(3) PDF ξ̂와 δh에대해각각하나의그림을작성하여제출 (총 두 개의그림).

• ξ̂ 그림: 기본 진동모드및 1–2차 배음모드를하나의그래프에겹쳐서표시 (x-축: r̂, y-축: ξ̂)

• δh그림: 기본 진동모드및 1–2차 배음모드를하나의그래프에겹쳐서표시 (x-축: r̂, y-축: δh)

3. 섹션 4, 비방사형 진동 을참고하여아래변수에해당하는별에서 l = 2에대응되는비방사형진동의기본진동모
드와 1-2차 배음모드를계산하라. (배점: 15 점)

• 폴리트로픽상수: K = 3.00

• 폴리트로픽인덱스: n =
√
3

(1) CODE 출력파일형식 (problem3.dat))
- 첫 번째 행: 배경 별의질량, 배경 별의반지름, 수렴한진동모드의각진동수 ω

- 두 번째행부터 2개의열로구성 - 첫 번째열: r̂, 두 번째 열: ξ̂, 세 번째 열: δĥ

(2) PDF 반지름에따른 ξ̂와 δĥ에대해세가지진동모드를겹쳐서그려라 (x-축: r̂, y-축: ξ̂ or δĥ, 각 변수별그
림 1개씩).

(3) 제공된 시각화 코드를 이용하여 비방사형 모드가 시간에 따라 어떻게 진동하는지 살펴보고 이를 통해 비방사
형진동에대해더욱깊게이해하자 (답안 제출불필요).

(4) CODE PDF 섹션 6을 참고하여 우리은하 내 지구와 1 kpc 떨어져 있는 중성자별 표면에서 1 cm만큼
변화(ξ = 1 cm)가 발생 하였다고 가정하자. 이때 2f와 2p1 모드에서 나오는 중력파의 크기를 추정하
라(m = 0, 1, 2). 2f는 l = 2에해당하는 진동 중 기본진동모드를의미하고 2p1는 l = 2에해당하는 진동 중
1차 배음모드에해당한다.

4. 섹션 5을 참고하여일반상대론에서아래변수에해당하는별의구조를찾아내라. (배점: 15 점)

• 폴리트로픽상수: K = 1.00× 102

• 폴리트로픽인덱스: n =
1√
2
, 1,

√
2

(1) CODE 출력파일형식 (problem4.dat))
- 첫 번째 행: n, 별의 질량, 수렴한반지름, 수렴한 Λ의표면값, 수렴한 Φ의중심값
- 두 번째행부터 4개의열로구성 - 첫 번째열: r̂, 두 번째 열: Λ, 세 번째 열: Φ, 네 번째 열: h

(2) PDF 각 n에대해반지름에따른 Λ, Φ, ρ를계산한뒤겹쳐서그리고 (x-축: r̂, y-축: Λ, Φ, ρ, 각 변수별그림
1개씩), n이변화함에따라어떠한경향성을갖는지설명하라.

(3) PDF (n =
1√
2
,K = 1000), (n = 1,K = 50), (n =

√
2,K = 5)의 3개의 상태방정식에 대해 ρc를 바

꿔가며 질량과 반지름을 계산한 뒤, 중심밀도-질량 (x-축: ρc, y-축: M ), 중심밀도-반지름 (x-축: ρc, y-축:
Rs), 질량-반지름 (x-축: Rs, y-축: M ) 곡선를 그려라.

(4) PDF 각각의 n에대하여중성자별이가질수있는최대질량과최대질량을가질때의중심밀도를구하라. 중
심밀도-질량데이터에서중성자별이최대질량에서 dM

dρc
= 0이라는것을활용하여최대질량을구한다.

5. (도전) 섹션 5, 내부구조 와 방사형진동을참고하여아래변수에해당하는별에서 Cowling근사를 사용하여방사
형진동의기본진동모드와 1-2차 배음모드를계산하라. (배점: 20 점)

• 폴리트로픽상수: K = 1.00
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• 폴리트로픽인덱스: n =
3
√
10

(1) CODE 출력파일형식 (problem5.dat)
- 첫 번째 행: 배경 별의질량, 배경 별의반지름, 수렴한진동모드의각진동수 ω

- 두 번째행부터 2개의열로구성 - 첫 번째열: r̂, 두 번째 열: ξ̂, 세 번째 열: δh

(2) PDF 반지름에따른 ξ̂와 δh에대해세가지진동모드를겹쳐서그려라 (x-축: r̂, y-축: ξ̂ or δh, 각 변수별그
림 1개씩).

(3) PDF (n =
√
2,K = 5)의 상태방정식에대해중심밀도에따른 ω2을계산하여그려라 (x-축: ρc, y-축: ω2).

중심밀도-ω2 관계식에서어떤경향성을찾을수있고이러한경향성이나오는이유에대하여서술하라.

6. (도전) 섹션 5, 방사형 진동 을 참고하여 아래 변수에 해당하는 별에서 Cowling근사를 사용하지 않고 방사형 진동
의기본진동모드와 1-2차 배음모드를계산하시오. (배점: 20 점)

• 폴리트로픽상수: K = 1.00

• 폴리트로픽인덱스: n =
3
√
10

(1) CODE 출력파일형식 (problem6.dat)
- 첫 번째 행: 배경 별의질량, 배경 별의반지름, 수렴한진동모드의각진동수의제곱 ω2

- 두 번째행부터 2개의열로구성 - 첫 번째열: r̂, 두 번째 열: ξ̂, 세 번째 열: δh

(2) PDF 반지름에따른 ξ̂와 δh에대해세가지진동모드를겹쳐서그려라 (x-축: r̂, y-축: ξ̂ or δh, 각 변수별그
림 1개씩).

(3) PDF (n =
√
2,K = 5)의 상태방정식에대해 ρc-ω2 관계(x-축: ρc, y-축: ω2)를 그려보고문제 5에서구한

ρc-ω2 관계와비교하라. 또한 문제 4에서 구한중심밀도-질량, 중심밀도-반지름, 질량-반지름 관계그림에서
ω2 ≥ 0부분과 ω2 < 0부분을다른색으로표시하고각각의색이무엇을의미하는지서술하라.

제출방식

• 문제 풀이에대한답안을하나의 PDF 파일로작성하여마감시간(2월 5일 16:00)까지 이메일로제출.
nrgw.loc@gmail.com

• 풀이에 사용한 수치 코드는 압축 파일 형태로 함께 제출하며, 컴파일 명령어, 컴파일 옵션 및 실행 방법을 정답지에
반드시기술할것.

• .dat 파일은용량이매우커지게되므로제출하지말것. 코드 실행시파일이생기도록코드를작성하라는의미임.

• 각 소문제별로 PDF 와 CODE 배지가붙어있다. PDF 가붙은문제는결과그림을 pdf파일에넣고, CODE 가
붙은문제는실행시주어진출력이나오는수치계산코드를제출한다.

주의사항

• 답안 제출시메일제목에팀명이반드시드러나도록표기할것.
예: 문제 풀이답안 (팀명: 포기하지마)

• 생성형 AI를 사용한경우, 사용한부분과범위를정답지에명확히기술해야함.
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설명자료

1 문제 출제의취지

중력파파원은방출되는신호의특성에따라크게네가지로분류된다. 첫째, 블랙홀이나중성자별과같은밀집천체쌍성이
서로를 공전하다 병합하는 과정에서 방출되는 밀집쌍성병합(Compact Binary Coalescence, CBC) 신호로, 현재까지
관측된 중력파 신호의 대부분을 차지한다. 둘째, 초신성 폭발과 같이 격렬한 천문현상에서 짧은 시간 동안 폭발적으로 방
출되는폭발형(burst) 신호가 있다. 셋째, 매우 오랜 시간에 걸쳐거의 일정한 주파수와세기로지속적으로방출되는연속
형(continuous) 신호가 있으며, 마지막으로초기우주의중력파와같이다양한주파수와세기를가진다수의파원들이중
첩되어배경잡음처럼관측되는스토캐스틱형(stochastic) 신호가 있다.
이 중 연속형 중력파 신호의 가장 유력한 방출 천체는 빠르게 회전하는 중성자별(Neutron Star)이다. 우리 은하 내

에 존재하는 중성자별들은 극도로 높은 밀도를 유지한 채 초당 수백에서 수천 회에 이르는 빠른 회전을 하고 있으나, 단순
히 무거운 중성자별이 빠르게 회전하는 것만으로는 연속적인 중력파가 발생하지 않는다. 만약 중성자별이 회전축을 기준
으로 질량 분포가 완전히 대칭인 축대칭(axial symmetry)을 유지한다면, 회전 과정에서 사중극자 모멘트(quadrupole
moment)가 시간에따라변화하지않기때문에중력파는방출되지않는다.
따라서 중성자별에서연속적인중력파가방출되기위해서는이러한축대칭성을깨뜨리는물리적요인이필요하다. 이

를설명하기위한여러이론적모델들이제안되어왔으며, 그중대표적인예가별내부유체의운동에의해유도되는비방사
형진동(non-radial oscillation)이다.
이번 2026 수치상대론및중력파겨울학교 / 계산천체물리경진대회에서는중성자별의내부구조를이해하기위한평

형해를계산하고, 방사형(radial) 및 비방사형(non-radial) 진동 모드를수치적으로분석함으로써연속중력파의방출과
정과해당중력파파원의물리적성질을탐구하는것을목표로한다. 이를 통해참가자들은중성자별진동과중력파물리의
핵심개념을수치계산을통해직접이해하고분석하는경험을얻게될것이다.

2 사용 단위

상대론과천체물리학에서자주등장하는상수인중력상수G = 6.674×10−8 cm3 g−1 s−2와 c = 2.998×1010cms−1는
일반적으로 사용하는 mks단위계나 cgs단위계에서 매우 크거나 매우 작은 값을 가진다. 이런 매우 크거나 작은 수를
이용한 연산의 불편함을 해소하기 위해서 본 실습에서는 G = c = 1인 단위계를 사용하고자 한다. 이러한 단위
계를 자연 단위계(Natural Units)이라고 한다. 그리고 G = c = 1으로는 모든 단위가 결정되지 않아 추가적으로
1M⊙(1.989× 1033g) = 1로 잡아서 더욱 간편하게 사용하고자 한다. G, c, 1M⊙는 모두 1이므로 아래와 같은 단위변환
이가능하다.

GM⊙/c
2 = 1 (Natural units)

= 1476.5234m (SI units)
(1)

즉,
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1 m = 1 m× 1

= 1 m× 1

GM⊙/c2

= 1 m× 1

1476.5234 m
= 0.000677267 (Natural units)

(2)

따라서중성자별의반지름이 SI 단위계에서 R = 10 km일 때, 이를 자연단위계로변환하면 R = 6.77267이된다.

자연단위 정의 cgs 단위 값

1L (길이) GM⊙/c
2 1.477× 105 cm

1T (시간) GM⊙/c
3 4.925× 10−6 s

1M (질량) M⊙ 1.988× 1033 g
1 ρ (밀도) M⊙/(GM⊙/c

2)3 6.180× 1016 gcm−3

1 f (주파수) (GM⊙/c
3)−1 2.030× 102 kHz

표 1: 자연단위계(G = c = M⊙ = 1)에서의 기본물리량과 CGS 단위변환 (모든 수치는유효숫자 4자리로표기)

3 상태방정식과폴리트로프근사

상태방정식의의미

상태방정식(equation of state, EOS)은 물질의 거시적상태를기술하는기본적인관계식으로, 일반적으로압력 P , 밀도
ρ, 온도 T 사이의관계를규정한다. 별 내부 구조문제에서상태방정식은주어진밀도에서물질이얼마만큼의압력을생성
할수있는지를결정하며, 이는 중력에대항하여별이평형을유지할수있는지를좌우한다.
별의 구조는중력에의한수축과압력에의한팽창사이의균형으로결정되므로, 상태방정식은별의질량, 반지름, 밀도

분포를 결정하는핵심적인 입력 물리량이다. 특히 정역학적 평형방정식에서 압력 구배는 상태방정식을 통해밀도 분포와
직접적으로연결된다.

축퇴천체에서의상태방정식

주계열성과달리, 백색왜성과중성자별과같은축퇴천체에서는온도에의한열압이거의중요하지않다. 대신 이들천체의
압력은 주로 페르미 입자의 축퇴압(degeneracy pressure)에 의해 지배되며, 이 압력은 온도와 무관하게 밀도의 함수로
주어진다. 따라서축퇴천체에서는상태방정식이사실상

P = P (ρ)

의형태로단순화된다. 이와같이압력이밀도의함수로만주어지는경우를바로트로픽상태방정식 (barotropic equation
of state)이라 하며, 이 가정은이후엔탈피변수를도입하는데핵심적인역할을한다.
백색왜성의경우전자축퇴압이압력을지배하며, 중성자별의경우에는중성자축퇴압과강한핵력에의한상호작용이

중요한역할을한다. 이로 인해상태방정식의형태는별의구조를결정하는가장중요한요소가된다.
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폴리트로프상태방정식근사

실제백색왜성과중성자별의상태방정식은미시적인상호작용과상대론적효과를포함해야하므로매우복잡하다. 그러나
별의 거시적 구조와 기본적인 물리적 성질을 이해하기 위한 첫 단계로서, 이러한 복잡한 상태방정식을 단순한 함수형으로
근사하는것이유용하다.
본 실습에서는상태방정식으로다음과같은폴리트로프(polytrope) 근사를사용한다.

P = Kρ1+
1
n (3)

여기서 K는 폴리트로픽 상수(polytropic constant), n은 폴리트로픽 인덱스(polytropic index)이다. 폴리트로픽 인덱
스 n은물질의압축가능성, 즉 상태방정식의단단함(stiffness)을 정성적으로반영한다.

실습에서단일폴리트로프를사용하는이유

중성자별의실제상태방정식은밀도에따라그성질이크게변화하므로, 하나의 단순한함수로정확히표현하기는어렵다.
그럼에도 불구하고단일폴리트로프모델은중력과압력사이의경쟁이라는핵심물리를가장단순한형태로드러내며, 별
의 구조가상태방정식에어떻게의존하는지를직관적으로이해할수있게해준다.
본 실습의목적은중성자별의실제상태방정식을정밀하게재현하는것이아니라, 평형 상태에있는별의구조와그위

에서정의되는진동모드의기본적인물리적성질을이해하는데있다. 이를 위해계산의단순성과물리적해석의명확성을
우선하여, 본 실습에서는하나의폴리트로프상태방정식만을사용하여평형상태의중성자별구조를계산한다.

엔탈피와바로트로픽상태방정식

엔탈피(enthalpy) h는단위질량당엔탈피(specific enthalpy)로 정의되며, 열역학적으로

h ≡ u+
P

ρ
(4)

로 주어진다. 여기서 u는단위질량당내부에너지, P는압력, ρ는질량밀도이다.
열역학제1법칙으로부터엔탈피의미분형은

dh = T ds+
1

ρ
dP (5)

로 주어지며, 축퇴 천체와같이바로트로픽상태방정식

P = P (ρ)

을만족하고엔트로피가공간적으로일정한경우에는

dh =
1

ρ
dP (6)

로 단순화된다.
따라서 엔탈피는 압력의 함수로 정의되는 유효 변수로 해석할 수 있으며, 정역학적 평형 방정식을 간결하게 표현하는

데유용하다.
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폴리트로프상태방정식에서의엔탈피

본실습에서는상태방정식으로다음과같은폴리트로프(polytrope) 근사를사용한다.

P = Kρ1+
1
n (7)

여기서K는폴리트로픽상수(polytropic constant), n은폴리트로픽인덱스(polytropic index)이다.
폴리트로프상태방정식에대해엔탈피는식 (6)에 의해

h =

∫
1

ρ
dP (8)

이므로, 이를 적분하면

h =

∫
1

ρ

(
K

(
1 +

1

n

)
ρ

1
n dρ

)
= K(n+ 1)ρ

1
n

(9)

를 얻는다.
일반상대론에서는정지질량자체가에너지를가지므로, 에너지밀도에정지질량에너지가포함된다. 이로 인해상대론

적단위질량당엔탈피는
h = 1 +K(n+ 1)ρ

1
n (10)

의 형태로쓸수있으며, 여기서앞의상수항 1은정지질량에너지에해당한다.
이 결과는폴리트로프모델에서엔탈피가밀도의단순한거듭제곱함수로표현됨을보여주며, 별의구조방정식을해석

적으로다루는데큰이점을제공한다.

4 뉴턴 역학에서별구조및진동

중성자별내부구조

중성자별속에존재하는진동모드들을구하기위해서는별의구조를알아야하므로평형상태에있는별의구조를계산해보
자. 별은 안쪽으로수축하려는중력과바깥쪽으로팽창하려는압력이균형을이루어평형상태를유지한다 (정역학적평형,
Hydrostatic equilibrium). 주계열성의 경우 핵융합을 통한 온도와 복사를 통해 팽창하려는 압력을 만들어내고, 백색왜
성이나중성자별의경우전자와중성자의축퇴압(degeneracy pressure) 그리고 다양한양자역학적효과를통해압력을
만들어낸다. 뉴턴 역학에서정역학적평형식은아래와같이쓸수있다.

1

ρ

dP

dr
= −dΦ

dr
(11)

여기서 Φ는중력퍼텐셜(gravitaional potential)이고, 이 식을엔탈피의정의(식 6)를 이용하면아래와같이정리된다.

dh

dr
= −dΦ

dr
. (12)
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그리고중력포텐셜은푸아송방정식(Poisson equation, ∇2Φ = 4πρ)을 통해 기술할수있다. 여기서 별이구대칭이라
고가정을하면 r방향으로계산만하면된다. 구 대칭별에대한중력포텐셜은아래와같이쓸수있다.

1

r2
d

dr

(
r2

dΦ

dr

)
= 4π

(
h

K(n+ 1)

)n

(13)

그럼 식 (13), (12) 이용하여별내부의중력퍼텐셜과엔탈피를계산할수있고, 다시엔탈피를이용하여밀도와압력을계
산할수있다. 수치계산에용이하게만들기위해무차원의새로운좌표계 r̂ = r

Rs
(Rs는별의반지름)를 도입하자. 위와 같

은새로운좌표를도입하면별의중심이 r̂ = 0이고, 별의 표면이 r̂ = 1로정규화된다. 새로운 좌표계로위두식을정리하
면아래와같다.

dh

dr̂
= −dΦ

dr̂
d2Φ

dr̂2
= −2

r̂

dΦ

dr̂
+ 4πR2

s

(
h

K (n+ 1)

)n (14)

이 두 식을이용하여별의중심(r̂ = 0)과별의표면(r̂ = 1)에서별의내부(r̂ = 0.5)를향해 h와 dΦ
dr̂을계산한다.

전미분 방정식 식 (14)을 풀기 위해서는 별의 중심(r̂ = 0)과 별의 표면(r̂ = 1)에서 두 변수 (h,Φ′)의 값과 미분값이
필요하다. 별의 중심(r̂ = 0)에서경계조건은아래와같이주어진다.

(i) h(r̂ = 0) = K (n+ 1) ρ
1
n
c

(ii) dh

dr̂

∣∣∣∣
r̂=0

= 0

(iii) dΦ

dr̂

∣∣∣∣
r̂=0

= 0

(iv) d2Φ

dr̂2

∣∣∣∣
r̂=0

=
4

3
πρcR

2
s

(15)

(i) 별의 중심밀도가주어진상황에서질량과반지름을구할것이므로중심밀도를통해중심에서의엔탈피를계산할수있
다.
(ii), (iii) 대칭성 통해별의중심에서힘을받지않는다는것을알수있다.
(iv) 별의 중심에서로피탈정리를이용하여경계조건을찾았다 ( 1r̂

dΦ
dr̂ = d2Φ

dr̂2 ).
별의 표면(r̂ = 1)에서는엔탈피가 0이 되는지점이된다. 이 경우 특별히발산하는성분이없기에경계조건을쉽게구

성할수있다.

(i) h(r̂ = 1) = 0

(ii) dh

dr̂

∣∣∣∣
r̂=1

=− M

Rs

(iii) dΦ

dr̂

∣∣∣∣
r̂=1

=
M

Rs

(iv) d2Φ

dr̂2

∣∣∣∣
r̂=1

=− 2M

Rs

(16)

(i) 표면에서밀도는 0이기때문에엔탈피도 0이 된다.
(ii), (iii) 별 외부에서중력퍼텐셜은단순히 Φ = −M

r = −M
Rs

1
r̂로주어진다. 그리고중력퍼텐셜과중력퍼텐셜의일차미분

값은별의표면에서연속이여야하므로 dΦ
dr̂ = M

Rs

1
r̂2이다.

(iv) 푸아송 방정식을통해구할수있다.
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그림 1: 고정된좌표계에서유체를관찰하는오일러의관점과, 유체를따라이동하며유체를관찰하는라그랑주의관점[1].

섭동방정식

유체를기술하는관점은 2가지가존재한다. 오일러 관점은정지한관찰자에의해기술되는방식을의미하고, 라그랑주관
점은유체의흐름에따라움직이는관찰자에의한관점이다(그림 1). 오일러의 관점에서는유체의물리량을공간좌표 r과
시간 t의함수로둔다.

ρ = ρ(r, t), v = v(r, t) (17)

즉, ”[특정 위치]에서 시간이 흐르며 물리량이 어떻게 변하는가?”를 나타내낸다. 반면, 라그랑주의 관점에서는 특정 유체
덩어리를 초기 위치 r0로 라벨링하고, 그 유체의 궤적을 r = r(r0, t)로 나타낸다. 속도 또한 라벨을 고정한 채로 위치를
시간으로미분하여얻는다.

v(r, t) =
dr

dt

∣∣∣∣
r0

(18)

두 관점을 잇는 연결고리는 유체 덩어리를 따라가며 본 시간 변화율이다. 임의의 물리량(ϕ)에 대해 두 관점에서의 미분은
아래와같은관계식갖는다.

dϕ

dr
=

(
∂ϕ

∂t

)
r

+∇ϕ · dr
dt

=
∂ϕ

∂t
+ v · ∇ϕ (19)

여기서, ∂/∂t는 공간의 고정된 위치에 대한 local time derivative이고, d/dt는 유체를 따라가는 시간 미분인 material
time derivative이다.
이제, 평형 상태의유체에작은섭동(perturbation)이 생기는상황을생각해보자. 유체에생기는섭동또한앞서본두

가지 관점으로 나누어 볼 수 있다. 오일러리안 섭동(δϕ)은 공간의”특정 위치”에서 물리량이 얼마나바뀌었는지, 라그랑지
안 섭동(∆ϕ)는 특정 유체 덩어리를 따라가면서”해당 입자”가 가지는 물리량이 얼마나 바뀌었는지를 나타낸다. 수식적으
로두섭동은아래와같은방식으로정의한다.
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δϕ(r, t) ≡ ϕ(r, t)− ϕ0(r) (20)

∆ϕ(r, t) ≡ ϕ(r + ξ, t)− ϕ0(r) (21)

그리고섭동의크기가매우작다고가정하면(|ξ| ≪ 1), 두 섭동은섭동의일차오더에서아래와같은관계식을가진다.

ϕ(r + ξ, t) ≃ ϕ(r, t) + ξ · ∇ϕ(r, t) (22)

섭동의일차오더에서 ξ · ∇ϕ ≃ ξ · ∇ϕ0이므로

∆ϕ = ϕ(r, t) + ξ · ∇ϕ(r, t)− ϕ0(r)

≃ [ϕ(r, t)− ϕ0(r)] + ξ · ∇ϕ(r, t)

= δϕ+ ξ · ∇ϕ(r, t)

(23)

또한, 평형상태에서유체들이정지해있다고가정하면(v0 = 0),

δv(r, t) =
∂ξ

∂t
(24)

유체의움직임을기술하는 2가지방정식은다음과같이주어진다.

∂ρ

∂t
+∇ · (ρv⃗) = 0 (25)

ρ
dv⃗

dt
+∇P + ρ∇Φ = 0 (26)

첫 번째식은연속방정식(continuity equation)이고두번째방정식은오일러방정식(Euler equation)이다. 여기에섭동
을넣어보자. 연속방정식에섭동을넣으면아래와같이정리된다.

0 =
∂

∂t
(ρ0 + δρ) +∇ · {(ρ0 + δρ) (v0 + δv)}

=
∂ρ0
∂t

+
∂δρ

∂t
+∇ · (ρ0v0 + δρv0 + ρ0δv + δρδv)

≃ ∂ρ0
∂t

+
∂δρ

∂t
+∇ · (ρ0v0 + δρv0 + ρ0δv)

=
∂δρ

∂t
+∇ · (ρ0δv)

=
∂δρ

∂t
+∇ ·

(
ρ0

∂ξ

∂t

)
=

∂

∂t
(δρ+∇ · (ρ0ξ))

0 = δρ+∇ · (ρ0ξ)

(27)

세 번째 등식은섭동의일차항까지만고려한것이고, 네 번째등식은회전하지않고정지한별(v0 = 0)이라는 점과, 연속방
정식에의해정리된다.
또한, 별 내부에 추가적인 에너지 생성원이 없다고 가정하고 상태방정식(P = Kρ1+

1
n )에 섭동을 취하면 압력의 섭동

과밀도의섭동간의관계식을얻을수있다.



2026 수치상대론및중력파겨울학교 / 계산 천체물리경진대회 11

P0 + δP = K (ρ0 + δρ)
1+ 1

n

= Kρ
1+ 1

n
0

(
1 +

δρ

ρ0

)1+ 1
n

≃ Kρ
1+ 1

n
0

(
1 +

(
1 +

1

n

)
δρ

ρ0

)
= Kρ

1+ 1
n

0 +Kρ
1
n
0

(
1 +

1

n

)
δρ

→ δP = Kρ
1
n
0

(
1 +

1

n

)
δρ

(28)

세번째 줄의 근사식은 Taylor 전개를 통해 얻을 수 있다. 마찬가지의 방법으로 오일러 방정식과 엔탈피-밀도 관계식에 섭
동을넣고, radial방향과 tangential방향으로식을나눈다.
그리고 섭동의 해가 시간에 따라 조화진동을 하고, 공간의 세 변수들이 분리되어 있는 해를 상정하자. 즉, 다음과 같은

ansatz를 가정하자.

ξ⃗(r, θ, ϕ, t) = ξr(r)X(θ)Y (ϕ)exp(−iωt)

+ ξh(r)W (θ)Z(ϕ)exp(−iωt)

δh(r, θ, ϕ, t) = δhr(r)P (θ)Q(ϕ)exp(−iωt)

(29)

오일러 방정식에 섭동을 추가하는 과정에서 우리는 tangential방향의 해가 구면 조화 함수(spherical harmonics)임을
알수있다.

ξ⃗(r, θ, ϕ, t) = ξr(r)Y
l
m(θ, ϕ) r⃗ exp(−iωt)

+ ξh(r)

(
∂Y l

m

∂θ
θ⃗ +

1

sinθ
∂Y l

m

∂ϕ
ϕ⃗

)
exp(−iωt)

δh(r, θ, ϕ, t) = δhr(r)Y
l
m(θ, ϕ)exp(−iωt)

(30)

위 식 (9), (26), (27), (28), (30)을 이용하여 오일러 방정식에섭동을추가한뒤, 변위의 섭동(ξ)과 엔탈피의 섭동(δh)에
대하여정리한다.
* hint : 구면 조화 함수(Y m

l (θ, ϕ))는 horizontal Laplacian ∇2
h의 고유함수로 ∇2

h연산을 취하면 − l(l+1)
r2 의 고유값

을갖는다. 즉,

∇2
hY

m
l (θ, ϕ) = − l(l + 1)

r2
Y m
l (θ, ϕ) (31)

여기서 ∇2
h는아래와같이정의된다.

∇2
hf ≡ 1

r2sinθ
∂

∂θ

(
sinθ∂f

∂θ

)
+

1

r2sin2θ
∂2f

∂2ϕ
(32)

정리한 식에서 δΦ는유체의움직임에비교적적은영향을주는반면해를구하기어렵게만든다. 그래서 δΦ ≃ 0로근사하
고이것을 Cowling 근사라고한다. 본 섹션에서는 Cowling 근사를적용한식을사용한다.

방사형진동

방사형진동은유체의변위의섭동이단순히 r방향으로만움직여서별이구대칭성(spherical symmetry)을 유지한채수
축과팽창을반복하는진동이다. 이는구면조화함수의차수가 0에해당하므로(l = 0) 앞서구한섭동식에 l = 0를대입하
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여 사용한다.
이 식을 통해 ξ와 δh를구하여별의진동모드를기술하기위해서는 ω를알아야한다. 방사형 진동의경우 ξ가별의중심에
서 r̂에비례한다는것이알려져있다. 따라서 ξ가중심에서 0이 되므로아래와같은새로운변수를정의하자.

ξ̂ =
ξ

r̂
(33)

앞서 구한섭동이가해진식들을 ξ̂에대해서정리하여계산하라.
별의 중심(r̂ = 0)에서경계조건은아래와같이주어진다.

(i) ξ̂(r̂ = 0) = 1

(ii) dξ̂

dr̂

∣∣∣∣∣
r̂=0

= 0

(iii) δh(r̂ = 0) = − 3
h0

nRs
ξ̂

(iv) dδh

dr̂

∣∣∣∣
r̂=0

= 0

(34)

(i) ξ(ξ̂)는 선형 해이기때문에임의의상수를곱하여도방정식을만족하는해이다. 따라서우리는 ξ̂ = 1로설정한다.
(ii) 대칭성 (iii) 섭동된 연속방정식 (iv) 섭동된 오일러방정식을통해알수있다.
별의 표면(r̂ = 1)에서경계조건은아래와같이주어진다.

(i) ξ̂(r̂ = 1) = 1

(ii) dξ̂

dr̂

∣∣∣∣∣
r̂=1

= − 1

n+ 1

1
dh0

dr

[
3
dh0

dr

ξ̂

r̂
+ nR2

sω
2 + n

d2h0

dr2
ξ̂

]

(iii) δh(r̂ = 1) = − 1

Rs

dh0

dr̂
ξ̂

(iv) dδh

dr̂

∣∣∣∣
r̂=1

= Rsω
2ξ̂

(35)

(i) 별의 중심에서와마찬가지로 ξ에임의의상수를곱하는것이가능하여, 우리는 ξ̂가표면에서 1이 되게끔설정한다.
(ii), 섭동된 연속 방정식을통해구할수있다. 특히 ∆h

h0
=

Rs
r̂ δh+

dh0
dr ξ̂

h0
가표면에서 0

0꼴이기때문에로피탈정리를사용하
여구할수있다.
(iii) 표면에서 주어진 또 다른 경계조건은 엔탈피의 라그랑지안 섭동이 0이라는 점이다(∆h = 0). 이 식을 오일러 섭동으
로바꾸면 ∆h = δh+ dh0

dr ξ = 0이고표면에서엔탈피의미분값은앞선문제에서구한값을사용하면된다.
(iv) 섭동된 오일러방정식을통해구할수있다.

δh는 ξ로 표현될 수 있고, ξ는 선형 해이기 때문에 별의 내부(r̂ = 0.5)에서 두 변수가 연속이라는 2가지 조건을 두 해
의비율이일치해야한다는하나의조건으로줄일수있다. 즉,

ξ̂surface
δhsurface

=
ξ̂core
δhcore

(36)

core는 중심에서부터계산한해, surface는 표면에서부터계산한해를의미한다. 그리고위조건을충족시키기위한새로
운함수 f를아래와같이정의한다.

f = ξ̂core × δhsurface − ξ̂surface × δhcore (37)
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그림 2: n = 1, ρc = 1.28× 10−3,K = 100인경우에생기는기본진동모드와 1-4차 배음모드

따라서위해가 0이 되게끔하는 ω를 1차원뉴턴랩슨법을사용하여구한다.
진동과 관련된 식들을 만족하는 해(ω)는 하나가 아니다. 관에 생기는 정상파가 다양한 모드를 가지듯이 별의 진

동 또한 다양한 모드를 가진다. ξ가 별의 중심을 제외한 모든 지점에서 노드(node; 0이 되는 지점)을 가지지않는 기
본(fundamental) 진동이 가장낮은진동수를가지고, n번째배음(overtone)은 n개의노드를가진다. 그림 (2)에서 파란
색 점이 기본진동을, 그리고 주황, 초록, 빨강, 보라순으로 한 단계 높은배음을나타낸다. 이번 실습에서 계산하는진동들
은압력을복원력으로하는진동으로, 이러한 진동의경우배음의단계가높아질수록고유진동수도같이커지는특성을갖
는다.

비방사형진동

비방사형진동의경우별의중심에서 ξ가 r̂l−1에비례하고, δh가 r̂l에비레하는것이알려져있다. l > 2인경우, 중심에서
ξ, ∂ξ∂r̂ , δh,

∂δh
∂r̂ 은 모두 0이 되므로 룽게 쿠타 방법을 사용하는 것이 불가하다. 이를 해결하기위해 아래와 같은 새로운 두

변수를정의하자.

ξ̂ =
ξ

r̂l−1
= 1 +Ar

δĥ =
δh

r̂l
= B + Cr

(38)

ξ는선형해이기때문에임의의상수를곱하는것이가능하므로 ξ의가장낮은차수의계수가 1이 되도록설정할수있다.여
기서미지수 A,B,C는아래와같이 ξ와 δh를다항식으로전개한후, 섭동된식들에대입하여구할수있다.

ξ = r̂l−1 +Ar̂l + · · ·

δh = Br̂l + Cr̂l+1 + · · ·
(39)

중심과 매우 가까운 영역을 생각해보자. r̂이 매우 작을 것이기 때문에 r̂로 식을 전개하였을 때, 방정식이 성립하기 위해서
는모든 r̂의차수마다계수가 0이 되어야한다. 모든 r̂의차수에서계수가 0이 되게하는미지수 A,B,C를찾아보자.
새로정의한두변수는기존변수와달리중심에서함숫값이 0이되지않는다. 새로정의한두변수ξ̂와 δĥ에대해중심에서
의경계조건은아래와같이쉽게주어진다.
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(i) ξ̂(r̂ = 0) = 1

(ii) dξ̂

dr̂

∣∣∣∣∣
r̂=0

= B

(iii) δĥ(r̂ = 0) = C

(iv) dδĥ

dr̂

∣∣∣∣∣
r̂=0

= D

(40)

별의 표면(r̂ = 1)에서의경계조건은식을 ξ̂와 δĥ에대해정리한후방사형진동에서와같은방식으로구할수있다.

(i) ξ̂(r̂ = 1) = 1

(ii) dξ̂

dr̂

∣∣∣∣∣
r̂=1

=

(iii) δh(r̂ = 1) = − 1

Rs

dh0

dr̂

(iv) dδh

dr̂

∣∣∣∣
r̂=1

=

(41)

(i) ξ̂가표면에서 1이 되게끔설정한다.
(iii) 엔탈피의라그랑지안섭동이 0이라는점을이용한다(∆h = 0).
(ii), (iv) 섭동을 취한연속방정식과오일러방정식을통해구할수있다.

5 일반상대론

회전하지 않는 정적(static)이며 구대칭(spherically symmetric)인 물질 분포를 가정하면, 시공간은 시간에 따라 변
하지 않고 모든 각방향에서 동일한 대칭을 갖는다. 따라서 계량텐서(metric tensor)는 시간좌표 t와 반지름좌표 r에
만 의존하는 함수들로 표현될 수 있다. 또한 구대칭성 때문에 각부분은 반드시 r2dΩ2 형태를 가져야 하며, 여기서
dΩ2 ≡ dθ2 + sin2 θ dϕ2 이다. 적절한 좌표 선택을 통해 교차항(dt dr 등)은 제거할 수 있으므로, 결과적으로 회전하지
않는구대칭물질분포에서의선요소(line element)는

ds2 = −e2Φ0(t,r)dt2 + e2Λ0(t,r)dr2 + r2
(
dθ2 + sin2 θ dϕ2

)
(42)

와 같은 형태로 쓸 수 있다. 여기서 Φ0(t, r)와 Λ0(t, r)는 각각 시간 성분과 반지름 성분의 중력 퍼텐셜 및 곡률 정보를 담
는함수이다.
완전유체(perfect fluid)를 가정하면, 물질은점성이나열전달이없고압력이모든방향에서동일한등방적(isotropic)

형태를갖는다. 이러한경우유체의에너지-모멘텀텐서(energy-momentum tensor)는 유체의에너지밀도와압력만으
로표현될수있다. 유체의 4-속도를 ua, 에너지 밀도를 ρ0, 압력을 P0라하면, 완전유체의에너지-모멘텀 텐서는공변적
으로다음과같이주어진다:

T ab = ρ0h0u
aub + P0g

ab (43)

여기서 h0는특정엔탈피(specific enthalpy)로, 내부에너지와압력의기여까지포함한총에너지밀도를나타내며,

h0 = 1 + ϵ0 +
P0

ρ0
(44)
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와 같이정의된다. ϵ0는유체의내부에너지이다.
정지한별의 4-velocity의 경우 u · u = −1임을이용하여아래와같이주어짐을알수있다.

uµ = (
1√
−gtt

, 0, 0, 0) = (e−Φ0 , 0, 0, 0) (45)

아인슈타인방정식

아인슈타인방정식은아래와같이쓰여진다.

Ga
b ≡ Ra

b −
1

2
Rδab = 8πT a

b (46)

구 대칭별에대한메트릭(식 42)에 대해필요한혼합성분 Ga
b는다음과같다.

Gt
t = −2r ∂rΛ(r, t) + e2Λ(r,t) − 1

r2e2Λ(r,t)
, (47)

Gr
r =

2r ∂rΦ(r, t)− e2Λ(r,t) + 1

r2e2Λ(r,t)
, (48)

Gt
r =

2 ∂tΛ(r, t)

r e2Λ(r,t)
. (49)

이후 전개에서는 Gθ
θ 및 Gϕ

ϕ 성분은특별히사용하지않으므로생략한다.
이제완전유체의에너지모멘텀텐서정의(식 43)와 함께아인슈타인텐서성분(식 47-49)을 써보면아래와같이써진

다.

−2r ∂rλ+ e2λ − 1

r2e2λ
= 8π

(
ρhutut + P

)
, (50)

2r ∂rϕ− e2λ + 1

r2e2λ
= 8π (ρhurur + P ) , (51)

2 ∂tλ

r e2λ
= 8πρhutur (52)

유체방정식

일반상대론에서이상기체와같은유체는완전유체(perfect fluid)로 근사할수있으며, 그 운동은국소적인질량보존과에
너지–모멘텀보존법칙으로기술된다. 즉, 유체의기본방정식은다음두보존식으로주어진다.

∇a

(
ρ0u

a
)
= 0, (53)

∇aT
a
b = 0, (54)

여기서 ρ0는 rest-mass density(질량밀도), ua는유체의 4-속도이며 T a
b는에너지–모멘텀텐서를나타낸다.

식 (54)는 에너지–모멘텀보존을의미하며, 이를 성분별로전개하면유체의에너지방정식(b = t)과 반지름방향운동
량(오일러) 방정식(b = r)을 얻을 수 있다. 일반적으로는 투영 텐서를 이용하여 에너지 방정식과 운동량 방정식으로 분해
하지만, 이는 동일한 내용을좌표계와무관한형태로정리한것일뿐이다. 따라서 본 실습에서는 ∇aT

a
b = 0를직접사용

해도무방하다.
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질량보존식 (53)은 다음과같이쓸수있다.

1√
−g

∂a
(√

−g ρ0u
a
)
= 0, (55)

여기서계량의행렬식은
√
−g = eϕ+λr2 sin θ (56)

로 주어진다. 구대칭조건을적용하면, 질량 보존식은다음과같은연속방정식으로정리된다.

∂t
(
eϕ+λr2ρ0u

t
)
+ ∂r

(
eϕ+λr2ρ0u

r
)
= 0. (57)

에너지–모멘텀보존식 ∇aT
a
b = 0에서 b = r 성분을취하면

∇a

(
ρhuaur + p δar

)
= 0 (58)

을 얻는다.
TOV 형태의계량텐서에서계산해보면최종적으로아래와같은결과를얻을수있다.

0 = ur
1

eϕ+λr2
[
∂t
(
eϕ+λr2ρhut

)
+ ∂r

(
eϕ+λr2ρhur

)]
+ ρh

[
ut∂tur + ur∂rur − Γt

tru
tut − Γr

tru
tur − Γt

rru
rut − Γr

rru
rur

]
+ ∂rp. (59)

내부구조

아인슈타인방정식(Gµ
ν = 8πTµ

ν )의 tt성분과 rr성분을계산하면아래와같은평형식을얻을수있다.

dΛ0

dr
=

1

2r

(
1− e2Λ0

)
+ 4πr (ρ0 + nP0) e

2Λ0 (60)

dΦ0

dr
= − 1

2r

(
1− e2Λ0

)
+ 4πrP0e

2Λ0 (61)

그리고 r-운동량보존식(식 59)에서 ∂t = 0, vr = 0을적용시키면,

dh0

dr
= −h0

dΦ0

dr
(62)

이다.
위 세개의식을이용하여평형상태의별속에서의메트릭과엔탈피(밀도)의 구조를계산하고자한다. 별의중심(r̂ = 0)에
서 Φ0의값은알수가없다. 따라서 임의의값(Φc)으로 초기값을둔뒤, 슈팅 방법을통해수렴시킨다. 그 외의 경계조건은
직접구하여사용한다.
그리고별의표면(r̂ = 1)에서의경계조건은아래와같이주어진다.
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(i) Λ0(r̂ = 1) = Λs

(ii) dΛ0

dr̂

∣∣∣∣
r̂=1

= − 1

2

(
1− e2Λs

)
(iii) Φ0(r̂ = 1) = − Λs

(iv) dΦ0

dr̂

∣∣∣∣
r̂=1

=
1

2

(
1− e2Λs

)
(v) h0(r̂ = 1) = 1

(vi) dh0

dr̂

∣∣∣∣
r̂=1

= − 1

2

(
1− e2Λs

)

(63)

(i), 표면에서의 Λ0의값을구하는것이불가하다. 그래서임의의값으로초기값을준뒤슈팅방법으로수렴시킨다.
(ii), (iv), (vi) 평형 방정식을통해얻을수있다.
(iii) 별의 표면에서내부의메트릭과외부메트릭은연속이어야한다. 외부가진동이라가정하면 Birkhoff’s 정리에의해외
부해는슈바르츠실트메트릭을만족하므로아래와같은조건을만족한다.

e2Φ0 = 1− 2M

Rs
, e−2Λ0 = 1− 2M

Rs
(64)

두 식을연립하면표면에서 Φ0 = −Λ0임을알수있다.
(v) 별 표면에서밀도가 0이므로식 (10)에 의해 1임을 알수있다.
3개의변수 h, Λ0, Φ0가 r̂ = 0.5에서연속이라는조건을사용하여 3개의슈팅변수 Rs(별의반지름), Λs(별의표면에

서의 Λ0의값), Φc(별의 중심에서의 Φ0의값)를 구하여라.

방사형진동

방사형진동을계산하기위해 θ, ϕ방향의성분이없는섭동을고려해보자. u · u = gtt (u
t)

2
+ grr (u

r)
2
= −1에섭동을

넣으면정지된별의경우, 4-velocity 섭동의시간성분과 r방향성분은아래와같이나온다.

δut = −δΦe−Φ0 (65)

δur =
∂ξ

∂t
e−Φ0 (66)

여기서 ξ은아래와같이정의된다.

∂ξ

∂t
=

dr

dt
=

dr/dτ

dt/dτ
=

ur

ut
(67)

연속방정식(식 53)과 운동량보존식(오일러 방정식, 식 54)에 섭동을추가하여일차까지만고려하면아래와같은식이된
다.

n

h0 − 1

(
δh+

dh0

dr
ξ

)
+

1

r2
e−Λ0

d

dr

(
r2eΛ0ξ

)
+ δΛ = 0 (68)

e2(Λ0−Φ0)ω2ξ +
1

h0

dδh

dr
− δh

h2
0

dh0

dr
+

dδΦ

dr
= 0 (69)

식 (68)은 연속방정식에대한섭동그리고식 (69)은 r-운동량보존식에대한섭동이다.
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또한아인슈타인방정식 t-r, r-r성분(식 51-52)에 섭동을적용하면아래의두개의식을찾을수있다.

δΛ +

(
dΛ0

dr
+

dΦ0

dr

)
ξ = 0 (70)

dδΦ

dr
+ 4πK

(
1 +

1

n

)(
h0 − 1

K(n+ 1)

)n+1
1

r
e2Λ0+Φ0

d

dr

(
r2e−Φ0ξ

)
− 4π

(
h0 − 1

K(n+ 1)

)n [
r
dh0

dr
− h0

]
e2Λ0ξ = 0 (71)

뉴턴역학에서의 Cowling 근사는 중력퍼텐셜의섭동을무시하는것이었다(δΦ = 0). Cowling 근사를 상대론적버전
은메트릭의섭동을무시하는것이다. 즉,

δΛ = 0

δΦ = 0
(72)

이고 아래와같이식이축소된다.

n

h0 − 1

(
δh+

dh0

dr
ξ

)
+

1

r2
e−Λ0

d

dr

(
r2eΛ0ξ

)
= 0 (73)

e2(Λ0−Φ0)ω2ξ +
1

h0

dδh

dr
− δh

h2
0

dh0

dr
= 0 (74)

계산 방식은뉴턴역학에서와동일하다. ξ̂ = ξ/r̂로식을정리한뒤, 별의 중심(r̂ = 0)과 별의 표면(r̂ = 1)에서 경계조
건을구하고, 슈팅 방법을통해 ω를구한다.
* 주의: 일반상대론의 경우 colwing근사를 사용하지 않으면 ω2이 0보다 작아질 수 있기 때문에 슈팅 변수를 ω가 아닌
ω2을사용한다.

6 중력파방출

평평한시공간에약한중력섭동이가해진상황을생각해보자. 즉, 계량 텐서를민코프스키(Minkowski) 계량과 작은섭동
의합으로가정하자.

gµν = ηµν + hµν (75)

여기서 ηµν = diag(−1, 1, 1, 1)이다. |hµν | ≪ 1로섭동이충분히작다고가정하면, 중력장 방정식을 h의 1차(선형) 차수
까지근사하여다룰수있다.
그리고광속에비해매우느리게움직이는(비상대론적) 물질의경우정지질량이가장지배적이다. 따라서에너지-운동

량텐서를아래와같이쓸수있다.

Tµν = ρuµuν (76)

선형화된 중력장 방정식을 사용할 때 hµν를 사용하는 것보다 다음과 같이 정의된 새로운 변수를 사용하는 것이 더욱 쉬워
진다.
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h̄µν ≡ hµν − ηµνh (77)

여기서 h는 hµν의합(trace)으로 h = hk
k이다. 위와 같은연산을통해 h̄는 h와부호가반대인대각합을갖는다. h̄를도입

함으로써선형화된중력장방정식은아래와같이파동방정식의형태를가진다.

□h̄µν = −16πTµν (78)

여기서 □ = − ∂2

∂t2
+∇2로정의된달랑베르연산자(d’Alembertian operator)이다. 식 (78)는 다음과같은일반해를갖

는다.

h̄αβ(t, x⃗) = 4

∫
d3x′T

αβ (t− |x⃗− x⃗′|, x⃗′)

|x⃗− x⃗′|
(79)

Tαβ에 들어가는 t − |x⃗ − x⃗′|는 중력파의 방출과 관측사이에 생기는 지연시간(retarded time)이다. 이는 중력파가 광
속(c = 1)으로 전파되기때문에생긴다.
이제 굉장히 멀리떨어진비상대론적파원으로부터방출된중력파를관측하는상황을생각해보자. 파원으로부터멀어

지게되면방출된파동은평면파의형태를갖게되고, 식 (78)에서 |x⃗− x⃗′| ≃ r로근사할수있다. 여기서 r은파원과관측
자사이의거리이다. 또한, 비상대론적파원으로부터방출되었기에식 (76)을 대입하면식 (78)을 만족하는중력파는아래
와같이근사적으로계산할수있다.

h̄ij(t, x⃗) ≃ 2

r
Ïij(t− r) (80)

여기서 I는아래와같이정의되는사중극자모멘트(quadrupole moment)이다.

Iij(t) ≡
∫

d3xρ(t, x⃗)xixj (81)

사중극자 모멘트는 물질의비대칭성을 나타내는값으로, 방사형 진동의 경우 사중극자모멘트를 변화시키지못한다. 하지
만 비방사형 진동의 경우 사중극자 모멘트를변화시키고, 중력파를 만들어내는것이 가능하다. 따라서 사중극자 모멘트를
직접계산하여비방사형진동에의해발생하는중력파의세기를추정하고자한다.

7 수치 계산방법

룽게-쿠타 2차 방법

룽게-쿠타 2차 방법(Runge Kutta 2nd order method, RK2)은 1계 상미분 방정식의 초기값 문제(Initial Value
Problem)를 수치적으로풀기위한방법이다. 단순히 n+ 1번째스텝을계산하기위해 n번째스텝에서의미분값을그대로
사용하는오일러방법(Euler’s Method)과 다르게추가적인스텝하나를추가하여정확도를개선한방법이다.
다음과같이 n번째스텝에서함숫값과미분값이주어진상황을고려해보자.

dy

dx

∣∣∣∣
n

= f(xn, yn), y(xn) = yn (82)

여기서 h를스텝간격(step size)이라 할 때, xn+1 = xn + h이다.
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𝑥

𝑦(𝑥)

𝑥! 𝑥!"#
= 𝑥! + 𝑑𝑟

(𝑥!, 𝑦!)
(𝑥!"#, 𝑦! + 𝑘#𝑑𝑟)

𝑘#

𝑘$

(𝑥!"#, 𝑦! + 𝑘$𝑑𝑟) 1
2
(𝑘# + 𝑘$)

그림 3: Heun의 방법을 기반으로 한 룽게 쿠타 2차 방법. 녹색 선(k1)은 (xn, yn)에서 평가한 기울기이고, 파란 선(k2)는
녹색 점에서평가한기울기이다. 최종적으로결정되는 n+ 1번째스텝은두기울기의평균(노란색)을 통해구한다.

룽게 쿠타 2차 방법의일반식은다음과같이주어진다.

yn+1 = yn + (a1k1 + a2k2)h (83)

여기서기울기 k1, k2는다음과같다.

k1 = f(tn, yn)

k2 = f(tn + αh, yn + βhk1)

2차 정확도(O(h2))를 만족하기위한계수들의조건은다음과같습니다.

a1 + a2 = 1, a2α =
1

2
, a2β =

1

2
(84)

4개의 미지수에 비해 계수간의 관계식은 3개로 미지수가 고유한 해를 가지지 않기 때문에 여러 가지 방식이 존재한다. 본
실습에서는 Heun의 방법이라불리는계수를사용할것이다. Heun의 방법에서계수는다음과같은값을가진다.

a1 = a2 =
1

2
, α = β = 1 (85)

즉,

k1 = f(tn, yn)

k2 = f(tn + h, yn + hk1)
(86)

이고,

yn+1 = yn +
1

2
(k1 + k2)h. (87)
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𝑥

𝑦(𝑥)

𝑥!𝑥!"#𝑥!"$

(𝑥!, 𝑦!)

(𝑥!"#, 𝑦!"#)

그림 4: 1차원 뉴턴랩슨방법. xn에서의함숫값과미분값을이용하여 xn+1의근사해를구한다.

이러한관계는그림 (3) 통해 더욱자세히볼수있다.
이 방법의 국소 절단 오차(Local Truncation Error)는 O(h3)이며, 전체 구간에 대한 전역 오차(Global Error)는

O(h2)이다.

뉴턴랩슨법

뉴턴 랩슨 법(Newton-Raphson Method)은 실수 함수 f(x) = 0의 해를 찾기 위한 가장 널리 사용되는 수치해석 방법
중하나로초기값 x0에서시작하여접선을이용해점차해에수렴해가는반복법(Iterative Method)이다.
함수 y = f(x)가미분가능하다고가정하자. 초기값을 xn이라할때, 곡선 상의점 (xn, f(xn))에서의접선의방정식

을구하면, 접선의기울기는 f ′(xn)이므로, 접선의방정식은다음과같다.

y − f(xn) = f ′(xn)(x− xn) (88)

이 접선이 x축과만나는점(y = 0)을 새로운근사해 xn+1로정의하자. 위식에 y = 0, x = xn+1을대입하면다음과같다.

0− f(xn) = f ′(xn)(xn+1 − xn) (89)

이를 xn+1에대해정리하면뉴턴-랩슨법의점화식을얻을수있다.

xn+1 = xn − f(xn)

f ′(xn)
(90)

단, 여기서 f ′(xn) ̸= 0이어야한다. 이 과정을반복하면점차실제해에점차다가갈수있게된다.
하지만 우리가계산하고자하는함수는 r̂ = 0.5에서양쪽해의차이값으로정의되므로미분값을직접적으로계산하는

것이불가하다. 따라서미분값을근사적으로구하기위해유한차분법(Finite difference method)을 사용하고자한다. 특
정 함수 f에대해 x0를중심으로하여약간떨어진 x0 −∆x, x0 +∆x에서테일러전개를하면아래와같다.
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f(x0 +∆x) ≃ f(x0) +
df

dx

∣∣∣∣
x=x0

∆x+
1

2

d2f

dx2

∣∣∣∣
x=x0

∆x2 + · · ·

f(x0 −∆x) ≃ f(x0)−
df

dx

∣∣∣∣
x=x0

∆x+
1

2

d2f

dx2

∣∣∣∣
x=x0

∆x2 + · · ·
(91)

위 식을 연립하여우리는 f의미분값을근사적으로계산할수있다.

df

dx

∣∣∣∣
x=x0

=
f(x0 +∆x)− f(x0 −∆x)

2∆x
(92)

만약, 우리가 찾아야하는 변수가 2개이상이 된다면 식(90)를 다차원으로 확장하여야 한다. 이것을 다변수 뉴턴 랩슨
방법이라고한다. 다변수뉴턴랩슨방법은비선형연립방정식

F⃗ (x⃗) = 0 (93)

의 해 x⃗를반복적으로근사하는수치해석기법이다. 여기서

x⃗ = (x1, . . . , xn)
T , F⃗ (x⃗) = (F1(x⃗), . . . , Fn(x⃗))

T (94)

이다.
현재 근사해 xk 근방에서 F (x)를 1차 테일러전개하면

F (xk +∆x) ≈ F (xk) + J(xk)∆x (95)

로 쓸 수있다. 여기서 J(x)는 Jacobian 행렬로

J(x) ≡
[
∂Fi

∂xj

]
(96)

이다.
해에 다가가기위해서는 F (x⃗k +∆x⃗k) = 0을만족시키는 x⃗를계속찾아가면된다.

F (x⃗k +∆x⃗k) ≈ F (xk) + J(xk)∆xk = 0 (97)

을 얻는다. 따라서매반복마다선형연립방정식

J(xk)∆xk = −F (xk) (98)

을 풀어 ∆xk를구하고, 해를 다음과같이갱신한다:

xk+1 = xk +∆xk. (99)

이를 정리하면 Newton–Raphson 반복은

xk+1 = xk − J(xk)
−1F (xk) (100)
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𝑓 = 𝑓(𝑅!, 𝑀)
𝑔 = 𝑔(𝑅!, 𝑀)

그림 5: n = 1, ρc = 1.28× 10−3,K = 100일때M = 1.4, Rs = 9를초기값으로사용하여얻은 h와 dΦ
dr̂

로쓸수있다. 다만 실제계산에서는역행렬을직접구하기보다는선형계 J(xk)∆xk = −F (xk)를수치적으로푸는방식
이사용된다. 선형대수계산을수행해주는라이브러리는파이썬: Numpy or Scipy, C언어: GSL, 포트란: LAPACK 등이
있다.

슈팅방법

슈팅 방법(shooting method)는 하나의 경계값 문제(Boundary Value Problem)를 초기값 문제로 변환해주는 방법이
다. x = 0과 x = 1에서 경계값이 주어진 미분방정식을 풀어서 별의 구조(엔탈피)를 계산한다고 생각해보자. 우리는
x = 0과 x = 1에서의 경계값과 룽게 쿠타 2차 방법을 사용하여 x = 0.5에서의 엔탈피의 함숫값을 양쪽에서 계산하
는 것이 가능하다. 하지만 슈팅 방법을 통해 구해야하는 변수(e.g. 별의 반지름, 진동의 주파수)에 임의의 초기값을 넣
었기 때문에 양쪽에서 구한 엔탈피는 다른 값을 가질 것이다(그림 5). 엔탈피와 중력퍼텐셜의 미분값이 모두 별의 내
부에서 연속이어야하므로 양쪽에서 구한 엔탈피와 중력퍼텐셜의 미분값을 같게 만드는 별의 반지름과 질량을 찾아야
한다. 즉, 별의 중심(r̂ = 0)부터 계산된 엔탈피(h(−))와 별의 표면(r̂ = 1)부터 계산된 엔탈피(h(+))의 차를 새로운 함
수 f(Rs,M) ≡ h(+) − h(−)로 정의했을 때, f(Rs,M) = 0을 만족하는 Rs와M을 찾아야한다. 마찬가지로 별의 중
심(r̂ = 0)부터계산된중력퍼텐셜의도함수(dΦdr (−)

)와 별의표면(r̂ = 1)부터계산된중력퍼텐셜의도함수(dΦdr (+)
)의 차로

정의된 함수 g(Rs,M) ≡ dΦ
dr (+)

− dΦ
dr (−)

도 동시에 0이 되는 Rs와M을 찾아야한다. 두 개의 변수에 대해 두 개의 함수
의근을찾아야하므로 Sec. 7에서 소개한 2차원 뉴턴랩슨방법을사용한다. 매 뉴턴 랩슨방법은함수 f와 g가 10−12보
다작아질때까지반복한다.

적분법

사중극자 모멘트를 계산하기 위해서는 식 (81)의 적분을 수행해야한다. 그러나 이러한 적분을 해석적으로 하는 것은 불가
능하고, 앞선 계산과 동일하게그리드를나누어적분하고자한다. (x, y, z)가 각각 [−1, 1]인공간에원점을중심으로반지
름이 1인 구 형태의 별을 생각해보자. 해당 공간에서 좌표 x, y, z를 각각 1000개로 나누고(1001개의 그리드 포인트), 각
그리프포인트를중심으로하는정육면체 10013개로나눠었을때, 각 큐브의중앙의위치가원점으로부터거리가 1이 넘으
면해당정육면체가별의외부로, 1보다 작거나같으면별내부로간주하자.
하나의정육면체내의밀도를큐브의중앙점을기준으로테일러전개한뒤, 정육면체내에서적분해보자.
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∫ x0+
1
2∆x

x0− 1
2∆x

ρ(x)dx =

∫ x0+
1
2∆x

x0− 1
2∆x

(
ρ(x0) +

dρ

dx

∣∣∣∣
x=x0

(x− x0) +
1

2

d2ρ

dx2

∣∣∣∣
x=x0

(x− x0)
2
+ · · ·

)
dx

≃
∫ x0+

1
2∆x

x0− 1
2∆x

(
ρ(x0) +

dρ

dx

∣∣∣∣
x=x0

(x− x0)

)
dx

= ρ(x0)

∫ x0+
1
2∆x

x0− 1
2∆x

dx+
dρ

dx

∣∣∣∣
x=x0

∫ x0+
1
2∆x

x0− 1
2∆x

(x− x0) dx

= ρ(x0)∆x

(101)

이는 3차원으로확장하여도동일하므로, 특정정육면체속의밀도는 O(∆x2)오차내에서일정하다고볼수있다. 정육면체
의밀도는정육면체중심에서의값을사용하고, 앞선 문제들에서계산한값을사용한다. 만약 정육면체중심의반경 r이앞
선 문제에서 구한 그리드 위에 위치하지 않을 경우, 선형보간법을 사용하여 해당 위치의 밀도를 계산한다. 별 내에 존재하
는모든큐브에대해 ∆x3ρ(x⃗)xixj를계산한뒤, 모두 합하여식 (81)을 계산한다.

선형보간법

선형보간법이란, 서로다른두점이주어졌을때그두점을잇는직선을잇고, 해당직선위에서원하는입력값에대응하는
출력값을추정하는방법이다. 즉, 데이터가선형적으로변화한다고가정함으로써계산을단순화한다.
어떤 함수 f(x)에 대하여 x = x1에서의 값 y1 = f(x1)과 x = x2에서의 값 y2 = f(x2)만 알고 있고, x1과 x2 사이

에존재하는 x0에해당하는함수값 y = f(x0)가필요한상황을생각해보자. 두 점 (x1, y1)와 (x2, y2)과구하고자하는점
(x, y)가모두한직선위에있다고가정함으로써계산을단순화한다. 세 점을지나는직선의방정식을세우면아래와같다.

y0 = y1 +
y2 − y1
x2 − x1

(x0 − x1) (102)

이를 통해우리는 x0에서의함수값 y0를구할수있다. 또한, 선형보간법은 O(h2)의정확도를가진다.

8 시각화코드사용방법

비방사형진동에대해더깊이이해하고자이를시각화하고자한다. animation.py는시각화를위해필요한함수들이들
어있으므로직접작성할필요없음.
(python) 필요 패키지
• numpy
• scipy
• matplotlib
• ffmpeg
• pathlib
• typing

2d_motion.py
별의 xy, xz, yz평면에대해밀도에가해지는섭동과진동에의해발생하는유체의움직임을시각화한다.
• input_filename_background : 배경 엔탈피에대한입력파일명으로, 파일 구조는문제 1과 동일하다.
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• input_filename_oscillation : 비방사형진동에대한입력파일명으로, 파일 구조는문제 3과 동일하다.
• output_filename : 출력 파일의파일명으로, ”.mp4” 또는”.gif” 확장자를사용한다.
• l, m : 구면 조화함수의차수를의미한다. 임의의 l에대해 0 ≤ m ≤ l만가능하다.
• plane : ”xy”, ”xz”, ”yz” 세 문자열중하나를사용한다.

3d_motion.py
별의표면에서진동에의해발생하는유체의움직임을시각화한다. 점이 빨간색으로변하는것은해당점이구표면에서바
깥쪽으로튀어나옴을, 파란색으로변하는것은점이구표면에서안쪽으로들어감을나타낸다.
• input_filename : 비방사형진동에대한입력파일명으로, 파일 구조는문제 3과 동일하다.
• output_filename : 출력 파일의파일명으로, ”.mp4” 또는”.gif” 확장자를사용한다.
• l, m : 구면 조화함수의차수를의미한다. 임의의 l에대해 0 ≤ m ≤ l만가능하다.
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