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Part 1. Numerical analysis



What is numerical analysis?

The study of algorithms for the problems of continuous mathematics.
(Lloyd N. Trefethen, SIAM News, 1992)

The field concerned with the design of computable algorithms for solving
mathematical problems, and with the analysis of their accuracy, efficiency, and
other aspects of performance.
(D. Arnold, 2024 Simons Conference on Localization of Waves)
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Accuracy

In the analysis of an algorithm, we should consider the error in computed
approximations to the solution of our problem. This error may be due to various factors
including rounding of arithmetic and the termination of an infinite process.

The composite midpoint rule
Let a and b be two real numbers with a < b. A continuous function f : [a, b] → R is given.∫ b

a

f(x) dx ≈ Qmid(f) =

N∑
j=1

hf (x̄j)

where h = (b− a)/N and x̄j = a+ (j − 0.5)h for j = 1, . . . , N .∣∣∣∣∣
∫ b

a

f(x) dx−Qmid(f)

∣∣∣∣∣ ≤ M
(b− a)

24
h2.

for some constant M .
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Efficiency

We usually measure the efficiency of a numerical algorithm in terms of the number of
basic arithmetical operations required for a given accuracy in the result.

Complexity of matrix-vector multiplication
Matrices with rank 1 can always be obtained as the outer product of two vectors. Given
a ∈ Rm and b ∈ Rn, the matrix with rank 1 can be computed by A = abT . Consider
Ax for some x ∈ Rn. This can be computed in two ways:

- y = (abT )x, the computational cost is O(mn),
- y = a(bTx), the computational cost is O(m) +O(n).
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Stability

An algorithm can be viewed as another mapping F̂ : X → Y . If F̂ for a given F is
accurate for each x ∈ X ,

|F (x)− F̂ (x)|
|F (x)|

≤ ϵ.

Stability

An algorithm F̂ for a problem F is stable if for each x ∈ X ,

|F (x̂)− F̂ (x)|
|F (x̂)|

≤ ϵ

for some x̂ with
|x̂− x|
|x|

≤ ϵ.
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Stability

• Input data can be perturbed. However, they are in a neighborhood of exact input x,
|x̂− x|/|x| ≤ ϵ.

• Thus, any such x̂ has to be considered as virtually equal to x.
• An algorithm is said to be stable if small errors in the inputs and at each step lead

to small errors in the solution.
• If an algorithm is stable, F̂ (x) is in a neighborhood of F (x̂).
• An algorithm that amplifies errors is called unstable.
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Errors

Absolute and relative errors
Let x̂ be an approximation to a real number x. Then its absolute error is given by

Eabs (x̂) = |x− x̂|

and its relative error is defined as

Erel (x̂) =
|x− x̂|
|x|

.
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Sources of error: Rounding

Computers can only store finitely many quantities. Thus, finitely many real and complex
numbers are representable on computers.

Let F = {x1, . . . , xN} be the ordered set of all representable numbers on computers.
Suppose that a real number x does not have an exact representation and
xj−1 < x < xj . The process of replacing the real number x by a nearby machine
number (either xj−1 or xj) is called rounding, and the error involved is called roundoff
error.
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Floating point number system

A floating point number system F ⊂ R is a subset of the real numbers whose elements
have the form

x = (−1)s × b(q−p) ×m.

This notation has the following parts:

• s is 0 or 1,
• b is the base,
• q is any integer emin ≤ (q − p) ≤ emax, p is the precision, and
• m is a number represented by a digit string of the form within [1, b).

Rounding
If x ∈ R then fl(x) denotes an element of F nearest x, then rounding is the mapping
x → fl(x).
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Machine epsilon

The machine epsilon is defined as the difference between 1.0 and the smallest
representable number which is greater than one. Let ϵM denote the machine epsilon.

The largest relative error
If x ∈ R lies in the range of F then

fl(x) = x(1 + δ), |δ| < 1

2
ϵM.∣∣∣∣fl(x)− x

x

∣∣∣∣ ≤ 1

2
ϵM.
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Model of arithmetic

To carry out rounding error analysis of an algorithm we need to make some
assumptions about the accuracy of the basic arithmetic operations.

Standard model
There is a small positive number such that for the elementary arithmetic operations
holds

fl(x ⋆ y) = (x ⋆ y)(1 + δ), |δ| ≤ 1

2
ϵM, ⋆ = +,−,×, /.

Relative roundoff errors of elementary operations bounded by 1
2ϵM.
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Sources of error: Truncation

Truncation errors result from the use of an approximation in place of an exact
mathematical procedure.

Forward difference approximation
We can compute the derivative of a function f(x) at a point x0 by using the forward difference,

D(f, h) =
f(x0 + h)− f(x0)

h
≈ f ′(x0).

The approximation can be derived by using a Taylor series. Expand f(x0 + h) around x0:

f(x0 + h) = f(x0) + hf ′(x0) +
h2

2
f ′′(x0) +O(h3).

Then,
f ′(x0) =

f(x0 + h)− f(x0)

h
− h

2
f ′′(x0) +O(h2).
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Computational error and data error

Consider the evaluation of a function f : R → R for a given argument x:

• x: true value of input,
• f(x): corresponding output value for true function,
• x̂: approximate input actually used,
• f̂ : approximate function actually used.

Total error is given by

f̂(x̂)− f(x) = f̂(x̂)− f(x̂) + f(x̂)− f(x).

f̂(x̂)− f(x̂) is the computational error and f(x̂)− f(x) is the propagated data error.
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Roundoff error and truncation error

• Truncation error: difference between true result for true value of input and result
produced by the given algorithm using exact arithmetic.

• Roundoff error: difference between result produced by the given algorithm using
exact arithmetic and produced by the same algorithm using limited precision
arithmetic.

• Computational error is sum of truncation error and roundoff error.
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Part 2. ODEs



Initial value problems (IVPs)

An initial value problem (IVP) for a first-order ordinary differential equation is given by

y′(t) = f(t, y), y(t0) = y0,

y′(t) = f(t, y) is the ordinary differential equation for y(t) and y(t0) = y0 is the initial
condition.

• t0, t1, . . ., tN : the points where the approximate solutions are defined.
• y(tj): the exact solution to the problem at tj .
• yj : the approximate solution at tj .
• hj : the step size, hj = tj+1 − tj ; if we use the fixed step size, h = tN−t0

N

The goal is to compute an approximate solution {y0, y1, . . . , yN} such that

yj ≈ y(tj).
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One-step method

The approximate solution is computed by

yj+1 = yj + hjΦ (tj , yj , hj) for j = 0, . . . , N − 1.

Explicit Euler method
In the Explicit Euler method,

Φ (tj , yj , hj) = f(tj , yj).

This is derived from the Taylor series expansion of y(t) around tj ,

y(tj+1) = y(tj) + hjy
′(tj) +

h2
j

2
y′′(ξj)

= y(tj) + hjf(tj , y(tj)) +
h2
j

2
y′′(ξj) ≈ y(tj) + hjf(tj , y(tj))

where ξj ∈ [tj , tj+1].
15



Local truncation error

The local truncation error is the difference between the approximate solution yj+1 and
the solution at tj+1 of the ODE. The local truncation error for the Explicit Euler method is

ej+1 = y(tj+1)− yj+1

= y(tj+1)− [y(tj) + hjf(tj , y(tj))] =
h2j
2
y′′(ξj).

The local truncation error is the left-over when plugging the exact solution into the
approximate formula. The local truncation error ej+1 is the error done in one step when
the approximation starts at the exact solution y(tj).
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Global error

The global error is the difference between the exact y(tj) and the approximate solution
yj at tj . The global error of the the approximate solution {y0, y1, . . . , yN} in [t0, tN ] is

EN = max
j=0,...,N

|y(tj)− yj | .

If ej(h) = O(hp+1), then Ej(h) = O(hp).
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Some examples of one-step methods

We consider the following IVP

y′(t) = f(t, y(t)), y(0) = y0.

Then
y(tj+1) = yj +

∫ tj+1

tj

f(τ, y(τ)) dτ.

We can approximate the integral by means of N + 1-point quadrature formula with
nodes c0, . . . , cN and weights w0, . . . , wN . The N + 1-point quadrature formula can be
written as follows: ∫ b

a
f(x) dx ≈ Q(f) =

n∑
j=0

wjf(cj).
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Some examples of one-step methods

Trapezoidal rule is given by

Qtrap(f) =
b− a

2
(f(a) + f(b)) .

Since y(tj+1) is approximated by the explicit Euler method, we can obtain

k1 = f(tj , yj), k2 = f(tj + h, yj + hk1), yj+1 = yj +
h

2
(k1 + k2).

We can also have the implicit Trapezoidal method, given by

yj+1 = yj +
h

2
(f(tj , yj) + f(tj+1, yj+1)).
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Some examples of one-step methods

Midpoint rule is given by

Qmid(f) = (b− a)f

(
a+ b

2

)
.

Since y(tj+1) is approximated by the explicit Euler method, we can obtain

k1 = f(tj , yj), k2 = f

(
t0 +

h

2
, y0 +

h

2
k1

)
, yj+1 = yj + hk2.

We can also have the implicit midpoint method,

yj+1 = yj + hf

(
t0 +

h

2
,
yj + yj+1

2

)
.
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Some examples of one-step methods

Simpson’s quadrature rule is given by

QS(f) =
b− a

6

(
f(a) + 4f

(
a+ b

2

)
+ f(b)

)
.

Then, we can obtain the fourth-order Runge Kutta method (RK4) as follows:

k1 = f (tj , yj) ,

k2 = f

(
tj +

h

2
, yj +

h

2
k1

)
,

k3 = f

(
tj +

h

2
, yj +

h

2
k2

)
,

k4 = f

(
tj +

h

2
, yj + hk3

)
,

yj+1 = yj +
h

6
h (k1 + 2k2 + 2k3 + k4) .
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Model problem

Consider the following IVP
y′(t) = λy(t), y(0) = 1.

The exact solution to the problem is y(t) = eλt. The explicit Euler method with a fixed
step size h gives

yj+1 = yj + λhyj = (1 + λh)yj .

Then,
yj = (1 + λh)jy0 = (1 + λh)j .

In particular, |yj | → 0 if
h <

2

|λ|
.

If λ < 0, the condition h < 2
|λ| must hold. If λ < 0 and |λ| ≫ 1, we should use very small

step size h.
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Stiff ODEs

The stiffness is not precisely defined. There are some statements describing a stiff
problem.

• A problem is stiff if it contains widely varying time scales, i.e., some components of
the solution decay much more rapidly than others.

• A problem is stiff if the stepsize is dictated by stability requirements rather than by
accuracy requirements.

• A problem is stiff if explicit methods don’t work, or work only extremely slowly.
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The implicit Euler method for stiff ODEs

For the implicit Euler method

yj+1 = yj + hf(tj+1, yj+1) = yj + λhyj+1

we can obtain
yj+1 =

1

(1− λh)
.

Thus, |yj | → 0 when |1− λh| > 1. If λ < 0, then |yj | → 0 for any positive value of h.
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Part 3. Exercises



Derive the error bound for the composite midpoint rule

Let a and b be two real numbers with a < b. A continuous function f : [a, b] → R is
given. ∫ b

a
f(x) dx ≈ Qmid(f) =
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f(x) dx−Qmid(f)

∣∣∣∣ ≤ M
(b− a)
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h2.
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Computational cost of matrix-vector multiplication

Matrices with rank 1 can always be obtained as the outer product of two vectors. Given
a ∈ Rm and b ∈ Rn, the matrix with rank 1 can be computed by A = abT . We try to
compute Ax for some x ∈ Rn. Compute the computational costs of the following
methods:

- y = (abT )x,
- y = a(bTx).
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Machine epsilon

F ⊂ R is a subset of real numbers whose elements have the form

x = (−1)s × b(q−p) ×m.

If x ∈ R lies in the range of F then

fl(x) = x(1 + δ), |δ| < 1

2
b(1−p).

27



Roundoff error in the difference formula

We can compute the derivative of a function f(x) at a point x0 by using the forward
difference,

D(f, h) =
f(x0 + h)− f(x0)

h
≈ f ′(x0).

For any evaluation of the function,

f̂ = f(1 + δ), |δ| < 1

2
ϵM.

Write D̂(f, h) and compute the error bound of |D(f, h)− D̂(f, h)|.
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Local truncation error

Compute the local truncation errors for the following methods:

• Implicit Euler method:

yj+1 = yj + hjf(tj+1, yj+1).

• Trapezoidal method

yj+1 = yj +
hj
2

(f(tj , yj) + f(tj+1, yj+1)) .
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Trapezoidal method for the stiff ODEs

The trapezoidal method is given as follows:

yj+1 = yj +
h

2
(f(tj , yj) + f(tj+1, yj+1)) .

Find the region of absolute stability for the method.
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Part 4. Answers



Derive the error bound for the composite midpoint rule

The Taylor expansion of f at x̄ = (a+ b)/2 gives

f(x) = f(x̄) + (x− x̄)f ′(x̄) +
(x− x̄)2

2
f ′′(ξ)

where ξ ∈ [x̄, x]. Then,∫ b

a
f(x) dx = (b− a)f(x̄) +

1

2

∫ b

a
(x− x̄)2f ′′(ξ) dx

where ξ ∈ [a, b]. This leads to the following∣∣∣∣∫ b

a
f(x) dx− (b− a)f(x̄)

∣∣∣∣ = 1

2

∣∣∣∣∫ b

a
(x− x̄)2f ′′(ξ) dx

∣∣∣∣ .
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Derive the error bound for the composite midpoint rule

The RHS is given by

1

2

∣∣∣∣∫ b

a
(x− x̄)2f ′′(ξ) dx

∣∣∣∣ ≤ M

2

∫ b

a
(x− x̄)2 dx

=
M

24
(b− a)3

where M = maxx∈[a,b] |f ′′(x)|. Then, partition [a, b] into N equidistant subintervals
[xj−1, xj ] of length h = xj − xj−1 = (b− a)/N for j = 1, . . . , N . x0 = a, xN = b, and
x̄j = xj−1 +

1
2h for j = 1, . . . , N .∫ b

a
f(x) dx =

N∑
j=1

∫ xj

xj−1

f(x) dx ≈
N∑
j=1

hf (x̄j) .
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Derive the error bound for the composite midpoint rule

For each interval [xj−1, xj ],∣∣∣∣∣
∫ xj

xj−1

f(x) dx− hf (x̄j)

∣∣∣∣∣ ≤ Mj

24
h3

where Mj = maxx∈[xj−1,xj ] |f ′′(x)|. Let M = max1≤j≤N{Mj}.∣∣∣∣∫ b

a
f(x) dx−Qmid(f)

∣∣∣∣ ≤ M

N∑
j=1

h3

24
.

Recall that h = (b− a)/N and hN = b− a.∣∣∣∣∫ b

a
f(x) dx−Qmid(f)

∣∣∣∣ ≤ M
(b− a)

24
h2.
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Computational cost of matrix-vector multiplication

operation # of ×(/) # of +(−) computational cost
(x ∈ Rn,y ∈ Rn) 7→ xTy n n− 1 O(n)

(x ∈ Rm,y ∈ Rn) 7→ xyT mn 0 O(mn)

(A ∈ Rm,k, B ∈ Rk,n) 7→ AB mnk mn(k − 1) O(mnk)
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Machine epsilon

Suppose that x > 0. We can write the real number x in the form

x = µ× b(q−p),

where b(p−1) ≤ µ < bp. Since x lies between the floating point numbers
x− = µ− × b(q−p) and x+ = µ+ × b(q−p), fl(x) = x− or x+.

|fl(x)− x| ≤ (x+ − x−)

2
≤ 1

2
b(q−p).

Then, ∣∣∣∣fl(x)− x

x

∣∣∣∣ ≤ 1
2b

(q−p)

µ× b(q−p)
≤ 1

2
b(1−p).
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Roundoff error in the difference formula

The evaluation of D(f, h) is given by

D̂(f, h) =
f(x0 + h)(1 + δx0+h)

h
− f(x0)(1 + δx0)

h
.

Since
|δ| < 1

2
ϵM,

|D(f, h)− D̂(f, h)| ≤ C
ϵM
h

for some constant C.
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Local truncation error

Compute the local truncation errors for the following methods:

• Implicit Euler method:

ej+1 = −
h2j
2
y′′(ξj)

where ξj ∈ [tj , tj+1].
• Trapezoidal method

ej+1 = −
h3j
12

y′′′(ξj)

where ξj ∈ [tj , tj+1].
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Trapezoidal method for the stiff ODEs

yj+1 = yj +
h

2
(−λyj − λyj+1)) .

Then,

yj+1 = yj

(
1− λh

2

1 + λh
2

)
.

The numerical solution of trapezoidal method decreases to 0 for any step size h > 0 if
λ < 0.
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