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Orbits in a gravitational potential
• The shape depends on the sign of the total 

energy, Etot = Ekin +E pot :

• Etot < 0 – Ellipse
• Etot = 0 – Parabola
• Etot > 0 – Hyperbola

• For the elliptical orbits, the eccentricity 
depends on the angular momentum: circular 
orbits have the maximum angular
momentum for a given energy.



Binary motion
• Two masses orbiting each other by mutual gravity
• Two masses are gravitationally bound (Etot < 0)



Kepler’s first law
• Planets move in elliptical orbits with the Sun at one focus of the ellipse



Kepler’s second law
• A line from the Sun to the planet 

sweeps out equal areas in equal 
times, i.e. planets don’t move at 
constant speed.



Kepler’s third law
• (Period of orbit)2 proportional to (semi-major axis of orbit)3.
• In symbolic form: P2 a3.

• If two quantities are proportional, we can insert a proportionality 
constant, k, which depends on the units adopted for P and a, and get an 
equation:

• P2 = ka3.
• For the solar system, k=1 with semi-major axis in AU, period in year.



Binary stars in Astronomy
• Visual binary 

• Close enough from us so we can track their motion in a long time 

• Ex) alpha Centauri A and B

Period (P) 79.762 year

Semi-major axis (a) 22.765 AU

Eccentricity (e) 0.5194

Mass A (M1) 1.0788 M☉

Mass B (M2) 0.9092 M☉



Binary stars in Astronomy
• Spectroscopic binaries 

• Doppler effect during binary motion



Binary stars in Astronomy
• Eclipsing binaries

• The orbital plane is aligned in a line of sight



Binary stars in Astronomy
• Eclipsing binaries

• The orbital plane is aligned in a line of sight



Binary stars in Astronomy
• Searching unresolved binaries in group of stars

Isochrone in HR diagram
Bolton+99



Binary stars in Astronomy
• Roche-lobe overflow

• Mass transfer and X-ray emission from the accretion disk

Iso-potential surface



Gravitational waves
• Propagation of ripples in space-time 

• Predicted by general relativity (Einstein 1916)

• Indirect evidence PSR 1913+16                 
(Hulse & Taylor 74;  Weisberg & Taylor 05)

Weisberg & Taylor 05

• Compact binary coalescences 
• The first detection – GW150914 (Abbott et al. 2016)

• BH-BH, NS-NS, BH-NS binary mergers 
detected so far



Two body problem

• When N is 2, you have a 2-Body Problem: exactly 2 particles, each 
exerting a force that acts on the other.

• The relationship between the 2 particles can be expressed as a 
differential equation that can be solved analytically, producing a closed-
form solution.

• So, given the particles’ initial positions and velocities, you can trivially 
calculate their positions and velocities at any later time.

• Simplified as a reduced body and center of mass



Force integration schemes

1. Euler’s method
• Simplest integrator 

• 1st order time complexity

• given position and velocity (x0, v0)

a0 = - m/r3 * x0

x1 = x0 + v0*dt + a0*dt2/2
v1 = v0 + a0*dt



Force integration schemes

2. Second-order Euler’s method
• Add time derivative of acceleration 

a0 = - m/r3 * x0

a’0 = -m/r3 * v0 + 3mx0∙v0/r5 * x0

x1 = x0 + v0*dt + a0*dt2/2 + a’0*dt3/6
v1 = v0 + a0*dt + a’0*dt2/2

• Euler’s method is not time symmetrized.



Force integration schemes

3. Leapfrog method
• Kick-Drift-Kick (KDK algorithm)

• slightly different with 1st order Euler’s method (time symmetry)

n 
time

)(,, n
ii

n
i

n
i xavx

2/1n
iv

n+1/2 n+1 n-1/2 n-1

2/1n
iv

)(,, 111  n
ii

n
i

n
i xavx )(,, 111  n

ii
n
i

n
i xavx

𝑣௜
௡ାଵ/ଶ

= 𝑣௜
௡ + 𝑎௜(𝑥௜

௡)Δ𝑡/2

𝑥௜
௡ାଵ = 𝑥௜

௡ + 𝑣௜
௡ାଵ/ଶ

Δ𝑡

𝑣௜
௡ାଵ = 𝑣௜

௡ାଵ/ଶ
+ 𝑎௜(𝑥௜

௡ାଵ)Δ𝑡/2



4th order Predictor & Corrector method
• Force and 1st derivative at current position (index “0”)
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4th order Predictor & Corrector method
• Predict next position and velocity after time (index “p”) by Taylor 

series
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4th order Predictor & Corrector method
• Taylor series expansion for the force and 1st derivative at predicted 

position

• Subtract two equations

• Substitute 3rd derivative in equations
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4th order Predictor & Corrector method
• Calculate force and 1st derivative at predicted position
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4th order Predictor & Corrector method
• Correct position and velocity up to 3rd derivative using Taylor series 

(index “1”)
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Post Newtonian Approximation
• Series expansion of relativistic equation of motion

■ Newtonian 

■ +1 PN (1/c2) 

– Relativistic precession

■ +1.5 PN (1/c3)

– Spin-orbit coupling

■ +2 PN (1/c4)

– Spin-spin coupling 

– Higher order precession

■ +2.5 PN (1/c5)

– Gravitational radiation

e=0.9, a=10-4AU



Force integration with PN effect
• Force = Newtonian force + PN force

• PN coefficients A, B for 2.5 PN
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Force integration with PN effect

• Derive ௣௡ by yourself from ௣௡
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Initial conditions 
• 2 dimensional position and velocity ଵ ଵ ଶ ଶ ଵ ଵ ଶ ଶ

• Center of mass coordinate
• Derive initial conditions from semi-major and eccentricity
• Initial position @apocenter

• G=1, ⨀, 
• Use constants below

𝑚ଵ 𝑚ଶ

𝑐. 𝑚.
𝑥

𝑦

𝑣ଵ
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π = 3.14159
G = 6.67430 × 10ି଼𝑐𝑚ଷ𝑔ିଵ𝑠ିଶ

c = 2.99792 × 10ଵ଴𝑐 𝑚 𝑠⁄
1AU = 1.49598 × 10ଵଷ𝑐𝑚

M⨀ = 1.98854 × 10ଷଷ𝑔



Orbital parameters

Semi-major axis a*eccentricity



Problem Set 1 – Circular orbit
• P1.1: get velocity scale and time scale when G=1, ⨀, (10pts)

• P1.2: Integrate orbit with 1 ⨀ ଶ ⨀ for 100 
orbits ( 𝑆𝑇𝐸𝑃𝑆 ) (10pts)

• P1.3: Integrate orbit with ଵ ⨀ ଶ ⨀ for 100 
orbits ( ௌ்ா௉ௌ ) (10pts)

• P1.4 Integrate orbit with ଵ ⨀ ଶ ⨀ for 100 
orbits ( ௌ்ா௉ௌ ) (10pts)



Problem Set 2 – elliptical orbit
• P2.1: Integrate orbit with ଵ ⨀ ଶ ⨀ for 

100 orbits ( ௌ்ா௉ௌ ) (15pts)

• P2.2: Integrate the orbit of Halley comet for 50 orbits ( ௌ்ா௉ௌ ) 
(15pts)

• , ଵ ⨀ ଶ
14

• Design time-step by yourself 
• more steps near pericenter, less steps near apocenter



Problem Set 3 – PN calculation
• P3.1: Integrate orbit with ଵ ⨀ ଶ ⨀

−5 until ௌ௖௛ ( ௌ்ா௉ௌ ) (20pts)
• ௌ௖௛ ଵ ଶ

ଶ

• P3.2: Integrate orbit with ଵ ⨀ ଶ ⨀
ିହ until ௌ௖௛ ( ௌ்ா௉ௌ ) (20pts)


