2024 Competition on Computational Astrophysics

2024.01.29

대전인재개발원

Orbits in a gravitational potential

- The shape depends on the sign of the total energy, $\mathrm{E}_{\text {tot }}=\mathrm{E}_{\text {kin }}+\mathrm{E}_{\text {pot }}$:
Parabola
$e=1.0$

$p=1.0$ | Hyperbola |
| :--- |
| $e=1.4$ |
| $a=2.5$ |

- $\mathrm{E}_{\text {tot }}<0-$ Ellipse
- $\mathrm{E}_{\text {tot }}=0-$ Parabola
- $\mathrm{E}_{\text {tot }}>0$ - Hyperbola
- For the elliptical orbits, the eccentricity depends on the angular momentum: circular orbits have the maximum angular momentum for a given energy.

Binary motion

- Two masses orbiting each other by mutual gravity
- Two masses are gravitationally bound ($\mathrm{E}_{\text {tot }}<0$)

Kepler's first law

- Planets move in elliptical orbits with the Sun at one focus of the ellipse

Kepler's second law

- A line from the Sun to the planet sweeps out equal areas in equal times, i.e. planets don't move at constant speed.

Kepler's third law

- (Period of orbit) $)^{2}$ proportional to (semi-major axis of orbit) ${ }^{3}$.
- In symbolic form: $P^{2} \propto a^{3}$.
- If two quantities are proportional, we can insert a proportionality constant, k, which depends on the units adopted for P and a, and get an equation:
- $P^{2}=k a^{3}$.
- For the solar system, $\mathrm{k}=1$ with semi-major axis in AU , period in year.

Binary stars in Astronomy

- Visual binary
- Close enough from us so we can track their motion in a long time
- Ex) alpha Centauri A and B

Mass A (M1)	$1.0788 \mathrm{M} \odot$
Mass B (M2)	$0.9092 \mathrm{M} \odot$
Period (P)	79.762 year
Semi-major axis (a)	22.765 AU
Eccentricity (e)	0.5194

Binary stars in Astronomy

- Spectroscopic binaries
- Doppler effect during binary motion

A Spectroscopic Binary System
High-mass star A and lower-mass B orbit around a common centre of mass. The observed combined spectrum shows periodic splitting and shifting of spectral lines. The amount of shift is a function of the alignment of the system relative to us and the orbital speed of the stars.

Binary stars in Astronomy

- Eclipsing binaries
- The orbital plane is aligned in a line of sight

Binary stars in Astronomy

- Eclipsing binaries
- The orbital plane is aligned in a line of sight

XZ Pup (Semi-detached)

V364 Cas (Detached)

V463Cy9 (Sem-detached)

RT And (Detached)

RZ Da (Semi-detached)

Binary stars in Astronomy

- Searching unresolved binaries in group of stars

Binary stars in Astronomy

- Roche-lobe overflow

- Mass transfer and X-ray emission from the accretion disk

Gravitational waves

- Propagation of ripples in space-time
- Predicted by general relativity (Einstein 1916)
- Indirect evidence PSR 1913+16
(Hulse \& Taylor 74; Weisberg \& Taylor 05)

- Compact binary coalescences
- The first detection - GW150914 (Abbottet al. 2016)
- BH-BH, NS-NS, BH-NS binary mergers detected so far

Two body problem

- When N is 2 , you have a 2-Body Problem: exactly 2 particles, each exerting a force that acts on the other.
- The relationship between the 2 particles can be expressed as a differential equation that can be solved analytically, producing a closedform solution.
- So, given the particles' initial positions and velocities, you can trivially calculate their positions and velocities at any later time.
- Simplified as a reduced body and center of mass

Force integration schemes

1. Euler's method

- Simplest integrator
- $1^{\text {st }}$ order time complexity
- given position and velocity $\left(\mathrm{x}_{0}, \mathrm{v}_{0}\right)$

$$
\begin{aligned}
& a_{0}=-m / r^{3} * x_{0} \\
& x_{1}=x_{0}+v_{0}^{*} d t+a_{0}{ }^{*} d t^{2} / 2 \\
& v_{1}=v_{0}+a_{0}{ }^{*} d t
\end{aligned}
$$

Force integration schemes

2. Second-order Euler's method

- Add time derivative of acceleration

$$
\begin{aligned}
& a_{0}=-m / r^{3} * x_{0} \\
& a_{0}^{\prime}=-m / r^{3} * v_{0}+3 m x_{0} \cdot v_{0} / r^{5} * x_{0} \\
& x_{1}=x_{0}+v_{0}{ }^{*} d t+a_{0}{ }^{*} d t^{2} / 2+a_{0}^{\prime}{ }^{*} d t^{3} / 6 \\
& v_{1}=v_{0}+a_{0}{ }^{*}{ }^{*} t+a_{0}^{\prime}{ }_{0}^{*} d t^{2} / 2
\end{aligned}
$$

- Euler's method is not time symmetrized.

Force integration schemes

3. Leapfrog method

- Kick-Drift-Kick (KDK algorithm)
- slightly different with $1^{\text {st }}$ order Euler's method (time symmetry)

$4^{\text {th }}$ order Predictor \& Corrector method

- Force and $1^{\text {st }}$ derivative at current position (index " 0 ")

$$
\begin{gathered}
\mathbf{a}_{0, i}=-\sum_{i \neq j} G m_{j} \frac{\mathbf{R}}{r^{3}} \\
\dot{\mathbf{a}}_{0, i}=-\sum_{i \neq j} G m_{j}\left[\frac{\mathbf{V}}{r^{3}}-\frac{3 \dot{r} \mathbf{R}}{r^{4}}\right] \\
\mathbf{R}=\left(\mathbf{r}_{0, i}-\mathbf{r}_{0, j}\right), \mathbf{V}=\left(\mathbf{v}_{0, i}-\mathbf{v}_{0, j}\right) \\
\dot{r}=(\mathbf{R} \cdot \mathbf{V}) / r
\end{gathered}
$$

$4^{\text {th }}$ order Predictor \& Corrector method

- Predict next position and velocity after time Δt (index " p ") by Taylor series

$$
\begin{gathered}
\mathbf{r}_{p, i}=\mathbf{r}_{0, i}+\mathbf{v}_{0, i} \Delta t+\mathbf{a}_{0, i} \frac{\Delta t^{2}}{2}+\dot{\mathbf{a}}_{0, i} \frac{\Delta t^{3}}{6} \\
\mathbf{v}_{p, i}=\mathbf{v}_{0, i}+\mathbf{a}_{0, i} \Delta t+\dot{\mathbf{a}}_{0, i} \frac{\Delta t^{2}}{2}
\end{gathered}
$$

$4^{\text {th }}$ order Predictor \& Corrector method

- Taylor series expansion for the force and $1^{\text {st }}$ derivative at predicted position

$$
\begin{gathered}
\mathbf{a}_{p, i}=\mathbf{a}_{0, i}+\dot{\mathbf{a}}_{0, i} \Delta t+\ddot{a}_{\delta, i} \frac{\Delta \varkappa^{2}}{2}+\dddot{\mathbf{a}}_{0, i} \frac{\Delta t^{3}}{6} \\
\dot{\mathbf{a}}_{p, i}=\dot{\mathbf{a}}_{0, i}+\ddot{\mathbf{a}}_{0}\left\langle t+\dddot{\mathbf{a}}_{0, i} \frac{\Delta t^{2}}{2}\right.
\end{gathered}
$$

- Subtract two equations

$$
\dddot{\mathbf{a}}_{0, i}=12 \frac{\mathbf{a}_{0, i}-\mathbf{a}_{p, i}}{\Delta t^{3}}+6 \frac{\dot{\mathbf{a}}_{0, i}+\dot{\mathbf{a}}_{p, i}}{\Delta t^{2}}
$$

- Substitute $3^{\text {rd }}$ derivative in equations

$$
\ddot{\mathbf{a}}_{0, i}=-6 \frac{\mathbf{a}_{0, i}-\mathbf{a}_{p, i}}{\Delta t^{2}}-2 \frac{2 \dot{\mathbf{a}}_{0, i}+\dot{\mathbf{a}}_{p, i}}{\Delta t}
$$

$4^{\text {th }}$ order Predictor \& Corrector method

- Calculate force and $1^{\text {st }}$ derivative at predicted position

$$
\begin{gathered}
\mathbf{a}_{p, i}=-\sum_{i \neq j} G m_{j} \frac{\mathbf{R}}{r^{3}} \\
\dot{\mathbf{a}}_{p, i}=-\sum_{i \neq j} G m_{j}\left[\frac{\mathbf{V}}{r^{3}}-\frac{3 \dot{r} \mathbf{R}}{r^{4}}\right] \\
\mathbf{R}=\left(\mathbf{r}_{p, i}-\mathbf{r}_{p, j}\right), \mathbf{V}=\left(\mathbf{v}_{p, i}-\mathbf{v}_{p, j}\right)
\end{gathered}
$$

$4^{\text {th }}$ order Predictor \& Corrector method

- Correct position and velocity up to $3^{\text {rd }}$ derivative using Taylor series (index " 1 ")

$$
\begin{aligned}
& \mathbf{r}_{1, i}(t)=\mathbf{r}_{p, i}+\ddot{\mathbf{a}}_{0, i} \frac{\Delta t^{4}}{24}+\dddot{\mathbf{a}}_{0, i} \frac{\Delta t^{5}}{120} \\
& \mathbf{v}_{1, i}(t)=\mathbf{v}_{p, i}+\ddot{\mathbf{a}}_{0, i} \frac{\Delta t^{3}}{6}+\dddot{\mathbf{a}}_{0, i} \frac{\Delta t^{4}}{24}
\end{aligned}
$$

Post Newtonian Approximation

- Series expansion of relativistic equation of motion
- Newtonian
- $+1 \mathrm{PN}\left(1 / \mathrm{c}^{2}\right)$
- Relativistic precession
- +1.5 PN $\left(1 / c^{3}\right)$
- Spin-orbit coupling
- $+2 \mathrm{PN}\left(1 / \mathrm{c}^{4}\right)$
- Spin-spin coupling
- Higher order precession
- +2.5 PN (1/c5)
- Gravitational radiation

Force integration with PN effect

- Force $=$ Newtonian force + PN force

$$
\begin{array}{ll}
\mathbf{a}=\mathbf{a}_{n}+\mathbf{a}_{p n}, \quad \mathbf{a}_{p n}=\frac{m_{j}}{r^{2}}\left(A \frac{\mathbf{R}}{r}+B \mathbf{V}\right) & \mathbf{R}=\left(\mathbf{r}_{0, i}-\mathbf{r}_{0, j}\right), \mathbf{V}=\left(\mathbf{v}_{0, i}-\mathbf{v}_{0, j}\right) \\
\dot{\mathbf{a}}=\dot{\mathbf{a}}_{n}+\dot{\mathbf{a}}_{p n} & \\
r=\left|\mathbf{r}_{0, i}-\mathbf{r}_{0, j}\right|, v=\left|\mathbf{v}_{0, i}-\mathbf{v}_{0, j}\right|
\end{array}
$$

- PN coefficients A, B for 2.5 PN

$$
\begin{aligned}
& A=\frac{8}{5} \eta \frac{M}{r} \dot{r}\left(\frac{17}{3} \frac{M}{r}+3 v^{2}\right) \\
& B=-\frac{8}{5} \eta \frac{M}{r}\left(3 \frac{M}{r}+v^{2}\right) \\
& M=m_{1}+m_{2}, \eta=\frac{m_{1} m_{2}}{M^{2}}
\end{aligned}
$$

Force integration with PN effect

- Derive $\dot{\mathbf{a}}_{p n}$ by yourself from $\mathbf{a}_{p n}=\frac{m_{j}}{r^{2}}\left(A \frac{\mathbf{R}}{r}+B \mathbf{V}\right)$
- Time dependent variables: $A, B, \mathbf{R}, \mathbf{V}, r$
- $\dot{r}=(\mathbf{R} \cdot \mathbf{V}) / r$
- $\ddot{r}=\left(v^{2}+\mathbf{R} \cdot \mathbf{a}-\dot{r}^{2}\right) / r$
- $\frac{d \mathbf{R}}{d t}=\mathbf{V}$
- $\frac{d \mathrm{~V}}{d t}=\mathbf{a}$
- $\dot{A}=$
- $\dot{B}=\frac{8}{5} \eta \frac{M}{r^{2}} \dot{r}\left(3 \frac{M}{r}+v^{2}\right)-\frac{8}{5} \eta \frac{M}{r}\left(-3 \frac{M}{r^{2}} \dot{r}+2 \mathbf{V} \cdot \mathbf{a}\right)$

Initial conditions

- 2 dimensional position and velocity $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(v x_{1}, v y_{1}\right),\left(v x_{2}, v y_{2}\right)$
- Center of mass coordinate
- Derive initial conditions from semi-major and eccentricity
- Initial position @apocenter

Orbital parameters

Problem Set 1 - Circular orbit

- P1.1: get velocity scale and time scale when $\mathrm{G}=1, \mathrm{~m} / \mathrm{M}_{\odot}, r / \mathrm{AU}$ (10pts)
- P1.2: Integrate orbit with $m_{1}=1 \mathrm{M}_{\odot}, m_{2}=1 \mathrm{M}_{\odot}, a=2 \mathrm{AU}$ for 100 orbits ($N_{\text {STEPS }} \leq 20000$) (10pts)
- P1.3: Integrate orbit with $m_{1}=1 \mathrm{M}_{\odot}, m_{2}=1 \mathrm{M}_{\odot}, a=2 \mathrm{AU}$ for 100 orbits ($N_{\text {STEPS }} \leq 40000$) (10pts)
- P1.4 Integrate orbit with $m_{1}=10 \mathrm{M}_{\odot}, m_{2}=2 \mathrm{M}_{\odot}, a=100 \mathrm{AU}$ for 100 orbits ($N_{S T E P S} \leq 20000$) (10pts)

Problem Set 2 - elliptical orbit

- P2.1: Integrate orbit with $m_{1}=1 \mathrm{M}_{\odot}, m_{2}=1 \mathrm{M}_{\odot}, a=2 \mathrm{AU}, \mathrm{e}=0.5$ for 100 orbits ($N_{\text {STEPS }} \leq 40000$) (15pts)
- P2.2: Integrate the orbit of Halley comet for 50 orbits ($N_{\text {STEPS }} \leq 40000$) (15pts)
- $a=17.8 \mathrm{AU}, \mathrm{e}=0.967, m_{1}=1 \mathrm{M}_{\odot}, m_{2}=2.22 \times 10^{14} \mathrm{~g}$
- Design time-step by yourself
- more steps near pericenter, less steps near apocenter

Problem Set 3-PN calculation

- P3.1: Integrate orbit with $m_{1}=10 \mathrm{M}_{\odot}, m_{2}=10 \mathrm{M}_{\odot}, a=$ $2 \times 10^{-5} \mathrm{AU}, \mathrm{e}=0$ until $r<r_{S c h}\left(N_{S T E P S} \leq 1000000\right)$ (20pts)
- $r_{\text {sch }}=2 G\left(m_{1}+m_{2}\right) / c^{2}$
- P3.2: Integrate orbit with $m_{1}=10 \mathrm{M}_{\odot}, m_{2}=2 \mathrm{M}_{\odot}, a=$ $2 \times 10^{-5} \mathrm{AU}, \mathrm{e}=0.8$ until $r<r_{\text {Sch }}\left(N_{\text {STEPS }} \leq 1000000\right)$ (20pts)

