2024 Competition on Computational Astrophysics

2024.01.29 대전인재개발원

Orbits in a gravitational potential

- The shape depends on the sign of the total energy, E_{tot} = E_{kin} +E_{pot} :
 - E_{tot} < 0 Ellipse
 - $E_{tot} = 0 Parabola$
 - $E_{tot} > 0 Hyperbola$
- For the elliptical orbits, the eccentricity depends on the angular momentum: circular orbits have the maximum angular momentum for a given energy.

Binary motion

- Two masses orbiting each other by mutual gravity
- Two masses are gravitationally bound ($E_{tot} < 0$)

Kepler's first law

• Planets move in elliptical orbits with the Sun at one focus of the ellipse

Kepler's second law

• A line from the Sun to the planet sweeps out equal areas in equal times, *i.e.* planets don't move at constant speed.

Kepler's third law

- (Period of orbit)² proportional to (semi-major axis of orbit)³.
- In symbolic form: $P^2 \propto a^3$.
- If two quantities are proportional, we can insert a proportionality constant, k, which depends on the units adopted for P and a, and get an equation:
- $P^2 = ka^3$.
- For the solar system, k=1 with semi-major axis in AU, period in year.

• Ex) alpha Centauri A and B

- Visual binary
 - Close enough from us so we can track their motion in a long time

Mass A (M1)	1.0788 <i>M</i> ⊙
Mass B (M2)	0.9092 <i>M</i> ⊙
Period (P)	79.762 year
renou (r)	79.702 year
Semi-major axis (a)	22.765 AU
Eccentricity (e)	0.5194

- Spectroscopic binaries
 - Doppler effect during binary motion

A Spectroscopic Binary System

High-mass star A and lower-mass B orbit around a common centre of mass. The observed combined spectrum shows periodic splitting and shifting of spectral lines. The amount of shift is a function of the alignment of the system relative to us and the orbital speed of the stars.

- Eclipsing binaries
 - The orbital plane is aligned in a line of sight

- Eclipsing binaries
 - The orbital plane is aligned in a line of sight

S Equ (S emi-detached)

XZ Pup (Semi-detached)

V463 C yg (Semi-detached)

RZ Dra (Semi-detached)

• Searching unresolved binaries in group of stars

Binary stars in Astronomy Roche-lobe overflow

• Mass transfer and X-ray emission from the accretion disk

Gravitational waves

- Propagation of ripples in space-time
 - Predicted by general relativity (Einstein 1916)
 - Indirect evidence PSR 1913+16 (Hulse & Taylor 74; Weisberg & Taylor 05)

- Compact binary coalescences
 - The first detection GW150914 (Abbott et al. 2016)
 - BH-BH, NS-NS, BH-NS binary mergers detected so far

Two body problem

- When *N* is 2, you have a <u>2-Body Problem</u>: exactly 2 particles, each exerting a force that acts on the other.
- The relationship between the 2 particles can be expressed as a differential equation that can be solved analytically, producing a closed-form solution.
- So, given the particles' initial positions and velocities, you can trivially calculate their positions and velocities at any later time.
- Simplified as a reduced body and center of mass

Force integration schemes

1. Euler's method

- Simplest integrator
 - 1st order time complexity
- given position and velocity (x₀, v₀)

$$a_0 = -m/r^3 * x_0$$

 $x_1 = x_0 + v_0 * dt + a_0 * dt^2/2$
 $v_1 = v_0 + a_0 * dt$

Force integration schemes

2. Second-order Euler's method

Add time derivative of acceleration

$$a_{0} = -m/r^{3} * x_{0}$$

$$a'_{0} = -m/r^{3} * v_{0} + 3mx_{0} \cdot v_{0}/r^{5} * x_{0}$$

$$x_{1} = x_{0} + v_{0} * dt + a_{0} * dt^{2}/2 + a'_{0} * dt^{3}/6$$

$$v_{1} = v_{0} + a_{0} * dt + a'_{0} * dt^{2}/2$$

• Euler's method is not time symmetrized.

Force integration schemes

3. Leapfrog method

- Kick-Drift-Kick (KDK algorithm)
 - slightly different with 1st order Euler's method (time symmetry)

• Force and 1st derivative at current position (index "0")

$$\mathbf{a}_{0,i} = -\sum_{i \neq j} G m_j \frac{\mathbf{R}}{r^3}$$
$$\dot{\mathbf{a}}_{0,i} = -\sum_{i \neq j} G m_j \left[\frac{\mathbf{V}}{r^3} - \frac{3\dot{r}\mathbf{R}}{r^4} \right]$$
$$\mathbf{R} = (\mathbf{r}_{0,i} - \mathbf{r}_{0,j}), \mathbf{V} = (\mathbf{v}_{0,i} - \mathbf{v}_{0,j})$$

$$m_1$$
 $a_{0,2}$ $v_{0,2}$ $r_{0,1}$ $r_{0,2}$

 m_2

V_{0,1}

$$\dot{r} = (\mathbf{R} \cdot \mathbf{V})/r$$

 Predict next position and velocity after time Δt (index "p") by Taylor series

$$\mathbf{r}_{p,i} = \mathbf{r}_{0,i} + \mathbf{v}_{0,i}\Delta t + \mathbf{a}_{0,i}\frac{\Delta t^2}{2} + \dot{\mathbf{a}}_{0,i}\frac{\Delta t^3}{6}$$
$$\mathbf{v}_{p,i} = \mathbf{v}_{0,i} + \mathbf{a}_{0,i}\Delta t + \dot{\mathbf{a}}_{0,i}\frac{\Delta t^2}{2}$$

 Taylor series expansion for the force and 1st derivative at predicted position

$$\mathbf{a}_{p,i} = \mathbf{a}_{0,i} + \dot{\mathbf{a}}_{0,i}\Delta t + \ddot{\mathbf{a}}_{0,i}\frac{\Delta t^2}{2} + \ddot{\mathbf{a}}_{0,i}\frac{\Delta t^3}{6}$$
$$\dot{\mathbf{a}}_{p,i} = \dot{\mathbf{a}}_{0,i} + \ddot{\mathbf{a}}_{0,i}\Delta t + \ddot{\mathbf{a}}_{0,i}\frac{\Delta t^2}{2}$$

• Subtract two equations

$$\ddot{\mathbf{a}}_{0,i} = 12 \frac{\mathbf{a}_{0,i} - \mathbf{a}_{p,i}}{\Delta t^3} + 6 \frac{\dot{\mathbf{a}}_{0,i} + \dot{\mathbf{a}}_{p,i}}{\Delta t^2}$$

• Substitute 3rd derivative in equations

$$\ddot{\mathbf{a}}_{0,i} = -6 \frac{\mathbf{a}_{0,i} - \mathbf{a}_{p,i}}{\Delta t^2} - 2 \frac{2 \dot{\mathbf{a}}_{0,i} + \dot{\mathbf{a}}_{p,i}}{\Delta t}$$

• Calculate force and 1st derivative at predicted position

$$\mathbf{a}_{p,i} = -\sum_{i \neq j} G m_j \frac{\mathbf{R}}{r^3}$$
$$\dot{\mathbf{a}}_{p,i} = -\sum_{i \neq j} G m_j \left[\frac{\mathbf{V}}{r^3} - \frac{3\dot{r}\mathbf{R}}{r^4} \right]$$
$$\mathbf{R} = (\mathbf{r}_{p,i} - \mathbf{r}_{p,j}), \mathbf{V} = (\mathbf{v}_{p,i} - \mathbf{v}_{p,j})$$

 Correct position and velocity up to 3rd derivative using Taylor series (index "1")

$$\mathbf{r}_{1,i}(t) = \mathbf{r}_{p,i} + \ddot{\mathbf{a}}_{0,i}\frac{\Delta t^4}{24} + \ddot{\mathbf{a}}_{0,i}\frac{\Delta t^5}{120}$$
$$\mathbf{v}_{1,i}(t) = \mathbf{v}_{p,i} + \ddot{\mathbf{a}}_{0,i}\frac{\Delta t^3}{6} + \ddot{\mathbf{a}}_{0,i}\frac{\Delta t^4}{24}$$

Post Newtonian Approximation

- Series expansion of relativistic equation of motion
 - Newtonian
 - +1 PN (1/c²)
 - Relativistic precession
 - +1.5 PN (1/c³)
 - Spin-orbit coupling
 - +2 PN (1/c⁴)
 - Spin-spin coupling
 - Higher order precession
 - +2.5 PN (1/c⁵)
 - Gravitational radiation

e=0.9, a=10⁻⁴AU

Force integration with PN effect

• Force = Newtonian force + PN force

• PN coefficients A, B for 2.5 PN

$$A = \frac{8}{5} \eta \frac{M}{r} \dot{r} \left(\frac{17}{3} \frac{M}{r} + 3v^2 \right)$$
$$B = -\frac{8}{5} \eta \frac{M}{r} \left(3 \frac{M}{r} + v^2 \right)$$
$$M = m_1 + m_2, \ \eta = \frac{m_1 m_2}{M^2}$$

Force integration with PN effect

- Derive $\dot{\mathbf{a}}_{pn}$ by yourself from $\mathbf{a}_{pn} = \frac{m_j}{r^2} \left(A \frac{\mathbf{R}}{r} + B \mathbf{V} \right)$
- Time dependent variables: A, B, R, V, r

•
$$\dot{r} = (\mathbf{R} \cdot \mathbf{V})/r$$

• $\ddot{r} = (v^2 + \mathbf{R} \cdot \mathbf{a} - \dot{r}^2)/r$
• $\frac{d\mathbf{R}}{dt} = \mathbf{V}$
• $\frac{d\mathbf{V}}{dt} = \mathbf{a}$
• $\dot{A} =$
• $\dot{B} = \frac{8}{5}\eta \frac{M}{r^2} \dot{r} \left(3\frac{M}{r} + v^2\right) - \frac{8}{5}\eta \frac{M}{r} \left(-3\frac{M}{r^2} \dot{r} + 2\mathbf{V} \cdot \mathbf{a}\right)$

Initial conditions

- 2 dimensional position and velocity $(x_1, y_1), (x_2, y_2), (vx_1, vy_1), (vx_2, vy_2)$
- Center of mass coordinate
- Derive initial conditions from semi-major and eccentricity
- Initial position @apocenter

y

Orbital parameters

Problem Set 1 – Circular orbit

- P1.1: get velocity scale and time scale when G=1, m/M_{\odot} , r/AU (10pts)
- P1.2: Integrate orbit with $m_1 = 1 M_{\odot}$, $m_2 = 1 M_{\odot}$, a = 2 AU for 100 orbits ($N_{STEPS} \le 20000$) (10pts)
- P1.3: Integrate orbit with $m_1 = 1 M_{\odot}$, $m_2 = 1 M_{\odot}$, a = 2 AU for 100 orbits ($N_{STEPS} \le 40000$) (10pts)
- P1.4 Integrate orbit with $m_1 = 10 M_{\odot}$, $m_2 = 2 M_{\odot}$, a = 100 AU for 100 orbits ($N_{STEPS} \le 20000$) (10pts)

Problem Set 2 – elliptical orbit

- P2.1: Integrate orbit with $m_1 = 1M_{\odot}, m_2 = 1M_{\odot}, a = 2AU, e = 0.5$ for 100 orbits ($N_{STEPS} \le 40000$) (15pts)
- P2.2: Integrate the orbit of Halley comet for 50 orbits ($N_{STEPS} \le 40000$) (15pts)
 - a = 17.8AU, e = 0.967, $m_1 = 1$ M $_{\odot}$, $m_2 = 2.22 \times 10^{14}$ g
- Design time-step by yourself
 - more steps near pericenter, less steps near apocenter

Problem Set 3 – PN calculation

- P3.1: Integrate orbit with $m_1 = 10 M_{\odot}, m_2 = 10 M_{\odot}, a = 2 \times 10^{-5} \text{AU}, e = 0$ until $r < r_{Sch}$ ($N_{STEPS} \le 1000000$) (20pts)
 - $r_{Sch} = 2G(m_1 + m_2)/c^2$
- P3.2: Integrate orbit with $m_1 = 10 M_{\odot}, m_2 = 2 M_{\odot}, a = 2 \times 10^{-5} \text{AU}, e = 0.8$ until $r < r_{Sch}$ ($N_{STEPS} \le 1000000$) (20pts)