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Orbits in a gravitational potential

* The shape depends on the sign of the total

— . Parab 1H
energy, E;o = By +E oy Eacshel

p=1.0
* E,,. <O0-Ellipse

* E,. = 0—Parabola

Hyperbola
e=14

Na=25

" N .

"'\-._ NN

-
Focus |

* E,.. >0—Hyperbola /
Ellipse | Circle /
e=0ﬁ; e=0.0|

* For the elliptical orbits, the eccentricity L) a=L0x

depends on the angular momentum: circular
orbits have the maximum angular
momentum for a given energy.



Binary motion

* Two masses orbiting each other by mutual gravity
* Two masses are gravitationally bound (E,., < 0)

Centre of Mass




Kepler’s first law

* Planets move in elliptical orbits with the Sun at one focus of the ellipse
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Kepler’s second law

* A line from the Sun to the planet
sweeps out equal areas in equal
times, i.e. planets don’t move at
constant speed.




Kepler’s third law

* (Period of orbit)? proportional to (semi-major axis of orbit)3.

* In symbolic form: P? «< a3.

* If two quantities are proportional, we can insert a proportionality
constant, k, which depends on the units adopted for P and a, and get an

equation:
* P2 = ka’.

* For the solar system, k=1 with semi-major axis in AU, period in year.



Binary stars in Astronomy

* Visual binary
* Close enough from us so we can track their motion in a long time

* Ex) alpha Centauri A and B

2085 o' —o® Cen

T period: 79.92 y
Mass A (M1) 1.0788 Mo
Mass B (M2) 0.9092 Mo
Period (P) 79.762 year
Semi-major axis (a) 22.765 AU ,

270° 9°0°

Eccentricity (e) 0.5194
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Binary stars in Astronomy
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* Spectroscopic binaries Obsenier |
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A Spectroscopic Binary System

High-mass star A and lower-mass B orbif around a common centre

of mass. The observed combined spectrum shows periodic splitting
and shifting of spectral lines. The amount of shift is a function of the
alignment of the system relative to us and the orbital speed of the stars.
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Binary stars in Astronomy

* Eclipsing binaries
* The orbital plane is aligned in a line of sight

Brightness




Binary stars in Astronomy

* Eclipsing binaries
* The orbital plane is aligned in a line of sight
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Binary stars in Astronomy

e Searching unresolved binaries in group of stars

Isochrone in HR diagram
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Binary stars in Astronomy

/ Iso-potential surface

e Roche-lobe overflow

* Mass transfer and X-ray emission from the accretion disk

Main -seq uence Roche lobe of
Gompanion white dwarf
™ J'

A
/ A N
P / “
/' Mass-transfer "~
stream b

Rochelobe . Accretion
of companion disk




Gravitational waves S
* Propagation of ripples in space-time il
* Predicted by general relativity (Einstein 1916)

* Indirect evidence PSR 1913+16
(Hulse & Taylor 74; Weisberg & Taylor 05)
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|1 . Compact binary coalescences
* The first detection — GW150914 (abbott et al. 2016)
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Two body problem

@ <« > @

* When N is 2, you have a 2-Body Problem: exactly 2 particles, each
exerting a force that acts on the other.

* The relationship between the 2 particles can be expressed as a
differential equation that can be solved analytically, producing a closed-
form solution.

* So, given the particles’ initial positions and velocities, you can trivially
calculate their positions and velocities at any later time.

» Simplified as a reduced body and center of mass



Force integration schemes

1. Euler’s method

e Simplest integrator
* 1st order time complexity

* given position and velocity (x,, v,)

— 3 %
a, =-m/r3 *x,

- * * ~t2
X, = X, + Vo*dt + a,*dt?/2

_ *
v, = Vg + a3 *dt



Force integration schemes

2. Second-order Euler’s method

* Add time derivative of acceleration

— 3 %

' = -.m 3 % MX* 5 %

— * * ~+2 7 k43
X, = Xg + Vo rdt + a,*dt?/2 + 2’ *dt3/6

V, =V, + a3 *dt + a’*dt?/2

* Euler’s method is not time symmetrized.



Force integration schemes

3. Leapfrog method
* Kick-Drift-Kick (KDK algorithm)

* slightly different with 1%t order Euler’s method (time symmetry)
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4 order Predictor & Corrector method

* Force and 15t derivative at current position (index “0”)




4 order Predictor & Corrector method

* Predict next position and velocity after time At (index “p”) by Taylor
series

At2 AL
l‘p,i = r0,l' + vO,iAt + a(),l' —+ ao’l’ —
2 6
At?

Vp,i = Vo,i + aoliAt + ao,i —2




4 order Predictor & Corrector method

* Taylor series expansion for the force and 15t derivative at predicted
position

2 At3
ap,i = 4dy,; + aO,iAt +}Xi + Ag; —
2 6
. . . .. At?
ap,i = ao,l- + a : t + aOIiT

. \Multi lying At /2

e Subtract two equations Plying At/
Ag; — Ay ap; +a,;
o = 12+ 6 g

* Substitute 3" derivative in equations

ao,l- — ap,l- _ 230,1' + ap,l'

do,; = —6 At2 At



4 order Predictor & Corrector method

 Calculate force and 15t derivative at predicted position




4 order Predictor & Corrector method

* Correct position and velocity up to 3" derivative using Taylor series
(index “1”)

OAtY A
r(t) =r,; +d; 7 T i1,

A3 Attt
vyi(t) = vy +d, < tauioy




Post Newtonian Approximation

* Series expansion of relativistic equation of motion

m Newtonian

m +1PN(1/c?

- Relativistic precession
m +1.5PN(1/c3)

- Spin-orbit coupling
m +2 PN (1/c%

- Spin-spin coupling

- Higher order precession
m +2.5PN(1/cd)

- QGravitational radiation

e=0.9, a=104AU
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Force integration with PN effect

* Force = Newtonian force + PN force

m; R
(a8 1 )

a=a,tay, ap,= =

R = (ro,l' - rO,j)’ V= (VO,i - Vo,j)

a=a,+ay, r=|ro; — o, v = |Vo; — Vol
* PN coefficients A, B for 2.5 PN

A—8 M 17M_|_3
577 r 3 r v?

8 M/ M
B = —§U—<3—+U )

mims;
M2

M=my+my n=



Force integration with PN effect

* Derive a,,, by yourself from a,,= 2 (A% + BV)

r2

* Time dependent variables: A, B,R,V,r
« 7= (R-V)/r

- #=(v?+R-a—72)/r
. IR _

dt
av
o ¥

=d
dt
.« 4 =

c B =057 (35 +v?) —Zn=(-357+2V-a)



Initial conditions

* 2 dimensional position and velocity (x;, 1), (x5, v2), (Vxy, vy,), (Vx,, vY5)
* Center of mass coordinate

* Derive initial conditions from semi-major and eccentricity

* Initial position @apocenter y

vl A

* G=1, m/Mg, r/AU

* Use constants below ¢ m-
my o ‘ m; "
m = 3.14159
G = 6.67430 x 10~ 8cm3g~1572 :
c=2.99792 x 10% m/s vy

1AU = 1.49598 x 10%3¢cm
Mo = 1.98854 x 1033g




Orbital parameters
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Problem Set 1 — Circular orbit

* P1.1: get velocity scale and time scale when G=1, m/M,, r/AU (10pts)

* P1.2: Integrate orbit with m; = 1My, m, = 1My, a = 2AU for 100
orbits (NSTEPS < 20000) (lOptS)

* P1.3: Integrate orbit with my; = 1My, m, = 1My, a = 2AU for 100
orbits (NSTEPS < 40000) (10pt$)

* P1.4 Integrate orbit with m; = 10Mg, m, = 2Mg,a = 100AU for 100
orbits (NSTEPS < 20000) (10pt5)



Problem Set 2 — elliptical orbit

* P2.1: Integrate orbit with my = 1My, m, = 1Mg,a = 2AU,e = 0.5 for
100 orbits (Ngrgps < 40000) (15pts)

* P2.2: Integrate the orbit of Halley comet for 50 orbits (Ngrgps < 40000)
(15pts)
* a =17.8AU,e = 0.967, m; = 1My, m, = 2.22 X 101*g

* Design time-step by yourself
* more steps near pericenter, less steps near apocenter



Problem Set 3 — PN calculation

* P3.1: Integrate orbit with m; = 10Mg, m, = 10Mg,a =
2 X 107°AU, e = 0 until r < r5sp, (Nsrgps < 1000000) (20pts)

* T5ep = 2G(my +my)/c?

* P3.2: Integrate orbit withm; = 10Mg, m, = 2Mg,a =
2 X 10_5AU, e =0.8untilr < Tsch (NSTEPS < 1000000) (ZOptS)



