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Frequentist vs Bayesian

Frequentist Statistics Bayesian Statistics 

- all about probability in the long run

- frequentist analyses base their results onl
y on the data they collect

- describes a method to update probabilities 
based on data and past knowledge 

- parameters and hypotheses are seen as pro
bability distributions and the data as fixed 

The prior is one of the key differences between frequentist and Bayesian inference



Bayesian inference
Bayesian inference is a way of making statistical inferences in which the statistician assigns 
prior distribution to the distributions that could generate the data.

After the data is observed, Bayes' rule is used to update the prior, that is, posterior distribu
tion assigned to the possible data generating distributions.

- We observe some data (a sample), that we collect in a vector 𝑥.

- We regard 𝑥 as the realization of a random vector 𝑋.

- We do not know the probability distribution of 𝑋.

- We define a statistical model, that is a set 𝜃 of probability distributions that could have generated the data.

- We parametrize the model, that is, we put the elements of 𝜃 in correspondence with a set of real vectors called parameters

- we use the sample and the statistical model to make an inference about the unknown data generating distribution



Bayes' rule

𝑷 𝑨 𝑩 =
𝑷 𝑩 𝑨 𝑷(𝑨)

𝑷(𝑩)

It is a rule for computing conditional probabilities.

Let be two events, A and B.

Denote it’s probabilities by P(A) and P(B).

Suppose the both P(A)>0 and P(B).



Bayes' rule – proof

conditional probability formula : 𝑃 𝐴 𝐵 =
𝑃(𝐴 ∩ 𝐵)
𝑃(𝐵)

𝑃 𝐵 𝐴 =
𝑃(𝐴 ∩ 𝐵)
𝑃(𝐴)

𝑃 𝐵 𝐴 𝑃(𝐴) = 𝑃(𝐴 ∩ 𝐵)The second formula re-arranged as follows :

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 𝑃(𝐴)

𝑃(𝐵)
It is plugged into the first formula, we obtain :



Bayes theorem

𝑃 𝜃 𝐷 =
𝑃 𝐷 𝜃 𝑃(𝜃)

𝑃(𝐷) =
𝑃 𝐷 𝜃 𝑃(𝜃)

∫𝑃(𝜃)𝑃 𝐷 𝜃 𝑑𝜃
D : the observed data
𝜃 : the model parameters

Initial Understanding + New Observation = Updated Understanding

Posterior = Likelihood * Prior



The likelihood
The first building block of a parametric Bayesian model is the likelihood 𝑝 𝐷 𝜃

Suppose that the sample is a vector of 𝑛 independent and identically distributed draws 𝑥!, ⋯ , 𝑥" from 
a normal distribution. 

𝑥 = 𝑥!⋯𝑥"
The mean (𝜇) of the distribution is unknown, while its variance 𝜎# is known. These are the two parame
ters of the model.

The Probability density function of a generic draw 𝑥$ is 𝑃 𝑥$ 𝜇 = 2𝜋𝜎# %!/#𝑒𝑥𝑝 − !
#
'!%( "

)"
, 

where we use the notation 𝑃 𝑥$ 𝜇 to highlight the fact that 𝜇 is unknow and the density of 𝑥$ depen
ds on this unknow parameter. 

Because the observation 𝑥!⋯𝑥" are independent, we can write the likelihood as 

𝑃 𝑥 𝜇 = ∏$*!
" 𝑃 𝑥$ 𝜇 = 2𝜋𝜎# %"/#𝑒𝑥𝑝 − !

#)"
∑$*!" 𝑥$ − 𝜇 # , 



The likelihood

𝑝 𝐷 𝜃  : The probability that the gravitational wave generated 
by the model parameter 𝜃 produces the signal 𝐷.

𝑃 𝐷 𝜃 =7
$*!

"

𝑃 𝑑$ 𝜃 = 2𝜋𝜎# %"/#𝑒𝑥𝑝 −
1
2𝜎#

:
$*!

"

𝑑$ − 𝜃 # ∝ 𝑒≺,%-|,%-//#

𝑎 𝑏 ≡ 4ℜA
0

1 B𝑎 𝑓 D𝑏∗ 𝑓
𝑆(𝑓)

𝑑𝑓

𝑎 𝑏 = 2ℜ∫%1
1 34 5 67∗ 5

8( 5 )
𝑑𝑓= ∫%1

1 34 5 67∗ 5 ; 34∗ 5 67 5
8( 5 )

𝑑𝑓



The prior
The prior is the subjective probability density assigned to the parameter 𝜃.



Intrinsic & extrinsic parameters



The posterior

𝑃 𝜃 𝐷 : The posterior probability is the conditional probability 𝑃 𝜃 𝐷 , calculated after 
receiving the information that the event D has happened.

The marginal distribution 𝑓(𝑥) is derived from the prior and the likelihood.

We first derive the joint distribution 𝑓 𝑥, 𝜃 = 𝑓 𝑥 𝜃 𝑓(𝜃) and the we marginalize it to obtain the posterior.

In the continuous case, the marginal is computed by integration as 𝑓 𝑥 = ∫ 𝑓 𝑥, 𝜃 𝑑𝜃.

In the discrete case, it is derived by calculating a sum as 𝑓 𝑥 = ∑< 𝑓 𝑥, 𝜃 .

à there are numerical methods that allow us to draw MCMC samples from the posterior distribution.

The posterior gives the probability density that a model describes the data.



Probability density function (PDF)
The probability density function is a function that completely characterizes the distribution 
of a continuous random variable.

The PDF of a continuous random variable 𝑋
is a function 𝑃𝐷𝐹=: ℝ → [0, )∞ such that

𝑃 𝑋 ∈ 𝑎, 𝑏 = A
4

7
𝑃𝐷𝐹= 𝑥 𝑑𝑥

for any interval 𝑎, 𝑏 ⊆ ℝ.

The set of values 𝑥 for which 𝑃𝐷𝐹= 𝑥 > 0
is called the support of 𝑋. 



Markov Chain Monte Carlo (MCMC)
Markov Chain Monte Carlo (MCMC) methods are very powerful Monte Carlo methods 
that are often used in Bayesian inference.

The classical Monte Carlo methods rely on computer-generated samples made up of independent o
bservations.

MCMC methods are used to generate sequences of dependent observations. These sequences 
are Markov chains.

à MCMC methods work like standard Monte Carlo methods, although with a twist: the comput
er-generated draws 𝑥!, ⋯ , 𝑥#are not independent, but they are serially correlated.

à They are the relizations of 𝑇 random variables 𝑋,⋯ , 𝑋> that form a Markov Chain.



Markov property

A random sequence 𝑋? is a Markov chain if and only if, given the current value 𝑋?, the future obser
vation 𝑋?;" are conditionally independent of the past values 𝑋?%@ , for any positive integers 𝑘 and 𝑛.

This property, known as the Markov property, The probability distribution of the future values of the 
chain depends only on its current value 𝑋?, regardless of how the value was reached regardless of th
e path followed by the chain in the past

𝑃 𝑋?;" = 𝑥 𝑋? , 𝑋?%!, ⋯ , 𝑋?%@ = 𝑃(𝑋?;" = 𝑥|𝑋?)

Although this is not true in general of any Markov chain, the chains generated by MCMC meth
od have the following property : 

Two variables 𝑋? and 𝑋?;" are not independent, but they become closer and closer to being ind
ependent as 𝑛 increases.
This property implies that 𝑓(𝑋?;"|𝑋?) converges to 𝑓(𝑋?;") as 𝑛 becomes large.



Bayes theorem

𝑃 𝜃 𝐷 =
𝑃 𝐷 𝜃 𝑃(𝜃)

𝑃(𝐷) =
𝑃 𝐷 𝜃 𝑃(𝜃)

∫𝑃(𝜃)𝑃 𝐷 𝜃 𝑑𝜃
D : the observed data
𝜃 : the model parameters

Initial Understanding + New Observation = Updated Understanding



The evidence
Normalization factor for parameter estimation

Important for model selection 



Nested Sampling
Nested sampling estimates directly how the likelihood function relates to prior mass. The evidence (alternatively th
e marginal likelihood, marginal density of the data, or the prior predictive) is immediately obtained by summation. 

𝐿 = 𝐿 𝜃 is the likelihood function.
𝑑𝑋 = 𝜋 𝜃 𝑑𝜃 is the element of prior mass and 𝜃 represents the unknown parameters.
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$conda deactivate
$conda env list
$conda activate igwn-py39

$nohup python *.py

$tail –f nohup.out
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