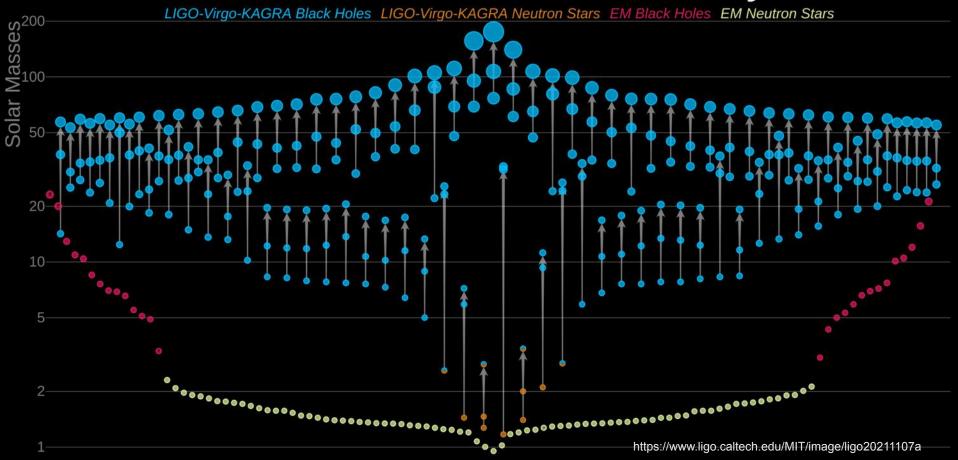
밀집성 쌍성의 형성과 진화

배영복 (CAU) 2024년 1월 31일 2024 수치상대론 및 중력파 겨울학교

Binary Compact Stars as Sources of Gravitational-waves

Observation of Gravitational Waves (GWs)

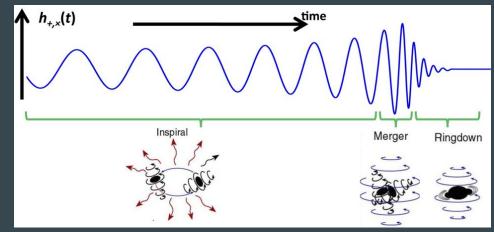
- GWTC-1 (Gravitational-Wave Transient Catalog)
 - O1 (Sep. 12, 2015 Jan. 19, 2016)
 - First detection of GWs
 - O2 (Nov. 30, 2016 Aug. 25, 2017)
 - First detection of a binary neutron star inspiral


GWTC-3 (Abbott et al.

2021)

- 11 GW sources
- GWTC-2, GWTC-2.1
 - O3a (Apr. 01, 2019 Oct. 01, 2019)
 - 44 GW sources
- GWTC-3
 - O3b (Nov. 01, 2019 Mar. 27, 2020)
 - 35 GW sources
- GWTC-4 ?
 - O4 (May, 24, 2023)
 - Hundreds of GW sources?

Event	$\stackrel{M}{(M_{\odot})}$	$\mathcal{M} \atop (M_{\odot})$	${m_1 \atop (M_{\odot})}$	${m_2 \atop (M_{\odot})}$	$\chi_{ m eff}$	$D_{\rm L}$ (Gpc)	z	(M_{\odot})	$\chi_{ m f}$	$\Delta\Omega (\text{deg}^2)$	SNR
GW191103_012549	$20.0^{+3.7}_{-1.8}$	$8.34\substack{+0.66\\-0.57}$	$11.8^{+6.2}_{-2.2}$	$7.9^{+1.7}_{-2.4}$	$0.21\substack{+0.16 \\ -0.10}$	$0.99_{-0.47}^{+0.50}$	$0.20\substack{+0.09 \\ -0.09}$	$19.0^{+3.8}_{-1.7}$	$0.75\substack{+0.06\\-0.05}$	2500	$8.9^{+0.3}_{-0.5}$
GW191105_143521	$18.5^{+2.1}_{-1.3}$	$7.82\substack{+0.61 \\ -0.45}$	$10.7^{+3.7}_{-1.6}$	$7.7^{+1.4}_{-1.9}$	$-0.02\substack{+0.13\\-0.09}$			$17.6^{+2.1}_{-1.2}$	$0.67\substack{+0.04 \\ -0.05}$	640	$9.7^{+0.3}_{-0.5}$
GW191109_010717	112^{+20}_{-16}	$47.5\substack{+9.6 \\ -7.5}$	65^{+11}_{-11}	47^{+15}_{-13}	$-0.29\substack{+0.42\\-0.31}$	$1.29^{+1.13}_{-0.65}$	$0.25\substack{+0.18 \\ -0.12}$	107^{+18}_{-15}	$0.61\substack{+0.18 \\ -0.19}$	1600	$17.3\substack{+0.5 \\ -0.5}$
GW191113_071753	$34.5^{+10.5}_{-9.8}$	$10.7^{+1.1}_{-1.0}$	29^{+12}_{-14}	$5.9^{+4.4}_{-1.3}$	$0.00\substack{+0.37 \\ -0.29}$			34^{+11}_{-10}	$0.45\substack{+0.33 \\ -0.11}$	3600	$7.9^{+0.5}_{-1.1}$
GW191126_115259	$20.7\substack{+3.4 \\ -2.0}$	$8.65\substack{+0.95 \\ -0.71}$	$12.1\substack{+5.5 \\ -2.2}$	$8.3\substack{+1.9\\-2.4}$	$0.21\substack{+0.15 \\ -0.11}$		$0.30\substack{+0.12 \\ -0.13}$	$19.6\substack{+3.5 \\ -2.0}$	$0.75\substack{+0.06 \\ -0.05}$	1400	$8.3\substack{+0.2\\-0.5}$
GW191127_050227	80^{+39}_{-22}	$29.9\substack{+11.7 \\ -9.1}$	53^{+47}_{-20}	24^{+17}_{-14}	$0.18\substack{+0.34 \\ -0.36}$		$0.57\substack{+0.40 \\ -0.29}$	76^{+39}_{-21}	$0.75\substack{+0.13 \\ -0.29}$	980	$9.2\substack{+0.7\\-0.6}$
GW191129_134029	$17.5^{+2.4}_{-1.2}$	$7.31\substack{+0.43 \\ -0.28}$	$10.7\substack{+4.1 \\ -2.1}$	$6.7^{+1.5}_{-1.7}$	$0.06\substack{+0.16 \\ -0.08}$	$0.79\substack{+0.26 \\ -0.33}$	$0.16\substack{+0.05 \\ -0.06}$	$16.8^{+2.5}_{-1.2}$	$0.69\substack{+0.03 \\ -0.05}$	850	$13.1\substack{+0.2 \\ -0.3}$
GW191204_110529	$47.2^{+9.2}_{-8.0}$	$19.8\substack{+3.6 \\ -3.3}$	$27.3^{+11.0}_{-6.0}$	$19.3\substack{+5.6 \\ -6.0}$	$0.05\substack{+0.26 \\ -0.27}$	$1.8^{+1.7}_{-1.1}$	$0.34\substack{+0.25 \\ -0.18}$	$45.0^{+8.6}_{-7.6}$	$0.71\substack{+0.12 \\ -0.11}$	3700	$8.8\substack{+0.4\\-0.6}$
GW191204_171526	$20.21\substack{+1.70 \\ -0.96}$	$8.55\substack{+0.38\\-0.27}$	$11.9\substack{+3.3 \\ -1.8}$	$8.2^{+1.4}_{-1.6}$	$0.16\substack{+0.08 \\ -0.05}$	$0.65\substack{+0.19 \\ -0.25}$	$0.13\substack{+0.04 \\ -0.05}$	$19.21\substack{+1.79 \\ -0.95}$	$0.73\substack{+0.03 \\ -0.03}$	350	$17.5\substack{+0.2 \\ -0.2}$
GW191215_223052	$43.3^{+5.3}_{-4.3}$	$18.4^{+2.2}_{-1.7}$	$24.9\substack{+7.1 \\ -4.1}$	$18.1\substack{+3.8 \\ -4.1}$	$-0.04\substack{+0.17\\-0.21}$	$1.93\substack{+0.89 \\ -0.86}$	$0.35\substack{+0.13 \\ -0.14}$	$41.4^{+5.1}_{-4.1}$	$0.68\substack{+0.07\\-0.07}$	530	$11.2\substack{+0.3 \\ -0.4}$
GW191216_213338	$19.81\substack{+2.69\\-0.94}$	$8.33\substack{+0.22\\-0.19}$	$12.1\substack{+4.6 \\ -2.3}$	$7.7^{+1.6}_{-1.9}$	$0.11\substack{+0.13 \\ -0.06}$	$0.34\substack{+0.12\\-0.13}$	$0.07\substack{+0.02 \\ -0.03}$	$18.87\substack{+2.80 \\ -0.94}$	$0.70\substack{+0.03 \\ -0.04}$	490	$18.6\substack{+0.2 \\ -0.2}$
$GW191219_163120$	$32.3^{+2.2}_{-2.7}$	$4.32\substack{+0.12\\-0.17}$	$31.1^{+2.2}_{-2.8}$	$1.17\substack{+0.07 \\ -0.06}$	$0.00\substack{+0.07\\-0.09}$	$0.55\substack{+0.25 \\ -0.16}$	$0.11\substack{+0.05 \\ -0.03}$	$32.2^{+2.2}_{-2.7}$	$0.14\substack{+0.06 \\ -0.06}$	1500	$9.1\substack{+0.5 \\ -0.8}$
$GW191222_033537$	79^{+16}_{-11}	$33.8\substack{+7.1 \\ -5.0}$	$45.1^{+10.9}_{-8.0}$	$34.7^{+9.3}_{-10.5}$	$-0.04\substack{+0.20\\-0.25}$	$3.0^{+1.7}_{-1.7}$	$0.51\substack{+0.23 \\ -0.26}$	$75.5^{+15.3}_{-9.9}$	$0.67\substack{+0.08\\-0.11}$	2000	$12.5\substack{+0.2 \\ -0.3}$
GW191230_180458	86^{+19}_{-12}	$36.5^{+8.2}_{-5.6}$	$49.4\substack{+14.0 \\ -9.6}$	37^{+11}_{-12}	$-0.05\substack{+0.26\\-0.31}$	$4.3^{+2.1}_{-1.9}$	$0.69\substack{+0.26 \\ -0.27}$	82^{+17}_{-11}	$0.68\substack{+0.11\\-0.13}$	1100	$10.4\substack{+0.3 \\ -0.4}$
$GW200105_162426$	$11.0\substack{+1.5 \\ -1.4}$	$3.42\substack{+0.08 \\ -0.08}$	$9.0^{+1.7}_{-1.7}$	$1.91\substack{+0.33 \\ -0.24}$	$0.00\substack{+0.13 \\ -0.18}$	$0.27\substack{+0.12 \\ -0.11}$	$0.06\substack{+0.02 \\ -0.02}$	$10.7\substack{+1.5 \\ -1.4}$	$0.43\substack{+0.05 \\ -0.02}$	7900	$13.7\substack{+0.2 \\ -0.4}$
$GW200112_{-155838}$	$63.9\substack{+5.7\\-4.6}$	$27.4^{+2.6}_{-2.1}$	$35.6\substack{+6.7 \\ -4.5}$	$28.3\substack{+4.4 \\ -5.9}$	$0.06\substack{+0.15 \\ -0.15}$	$1.25\substack{+0.43 \\ -0.46}$	$0.24\substack{+0.07 \\ -0.08}$	$60.8\substack{+5.3 \\ -4.3}$	$0.71\substack{+0.06 \\ -0.06}$	4300	$19.8\substack{+0.1 \\ -0.2}$
$GW200115_042309$	$7.4^{+1.8}_{-1.7}$	$2.43\substack{+0.05 \\ -0.07}$	$5.9^{+2.0}_{-2.5}$	$1.44\substack{+0.85\\-0.29}$	$-0.15\substack{+0.24\\-0.42}$	$0.29\substack{+0.15 \\ -0.10}$	$0.06\substack{+0.03 \\ -0.02}$	$7.2^{+1.8}_{-1.7}$	$0.42\substack{+0.09 \\ -0.05}$	370	$11.3\substack{+0.3 \\ -0.5}$
GW200128_022011	75^{+17}_{-12}	$32.0\substack{+7.5\\-5.5}$	$42.2\substack{+11.6 \\ -8.1}$	$32.6\substack{+9.5 \\ -9.2}$	$0.12\substack{+0.24 \\ -0.25}$	$3.4^{+2.1}_{-1.8}$	$0.56\substack{+0.28 \\ -0.28}$	71^{+16}_{-11}	$0.74\substack{+0.10 \\ -0.10}$	2600	$10.6\substack{+0.3 \\ -0.4}$
$GW200129_065458$	$63.4\substack{+4.3 \\ -3.6}$	$27.2\substack{+2.1 \\ -2.3}$	$34.5\substack{+9.9 \\ -3.2}$	$28.9\substack{+3.4 \\ -9.3}$	$0.11\substack{+0.11 \\ -0.16}$	$0.90\substack{+0.29 \\ -0.38}$	$0.18\substack{+0.05 \\ -0.07}$	$60.3\substack{+4.0 \\ -3.3}$	$0.73\substack{+0.06 \\ -0.05}$	130	$26.8\substack{+0.2 \\ -0.2}$
GW200202_154313	$17.58\substack{+1.78 \\ -0.67}$	$7.49\substack{+0.24 \\ -0.20}$	$10.1\substack{+3.5 \\ -1.4}$	$7.3^{+1.1}_{-1.7}$	$0.04\substack{+0.13 \\ -0.06}$	$0.41\substack{+0.15 \\ -0.16}$	$0.09\substack{+0.03\\-0.03}$	$16.76\substack{+1.87 \\ -0.66}$	$0.69\substack{+0.03 \\ -0.04}$	170	$10.8\substack{+0.2 \\ -0.4}$
$GW200208_130117$	$65.4\substack{+7.8 \\ -6.8}$	$27.7^{+3.6}_{-3.1}$	$37.8^{+9.2}_{-6.2}$	$27.4\substack{+6.1 \\ -7.4}$	$-0.07\substack{+0.22\\-0.27}$		$0.40\substack{+0.15\\-0.14}$	$62.5\substack{+7.3 \\ -6.4}$	$0.66\substack{+0.09\\-0.13}$	30	$10.8\substack{+0.3 \\ -0.4}$
GW200208_222617	63^{+100}_{-25}	$19.6\substack{+10.7 \\ -5.1}$	51^{+104}_{-30}	$12.3\substack{+9.0 \\ -5.7}$	$0.45\substack{+0.43 \\ -0.44}$	$4.1^{+4.4}_{-1.9}$	$0.66\substack{+0.54\\-0.28}$	61^{+100}_{-25}	$0.83\substack{+0.14\\-0.27}$	2000	$7.4^{+1.4}_{-1.2}$
$GW200209_085452$	$62.6\substack{+13.9\\-9.4}$		$35.6\substack{+10.5 \\ -6.8}$		$-0.12\substack{+0.24\\-0.30}$	$3.4^{+1.9}_{-1.8}$	$0.57\substack{+0.25 \\ -0.26}$	$59.9\substack{+13.1 \\ -8.9}$	$0.66\substack{+0.10\\-0.12}$	730	$9.6\substack{+0.4\\-0.5}$
$GW200210_092254$	$27.0^{+7.1}_{-4.3}$	$6.56\substack{+0.38\\-0.40}$	$24.1\substack{+7.5 \\ -4.6}$	$2.83\substack{+0.47 \\ -0.42}$	$0.02\substack{+0.22\\-0.21}$	$0.94\substack{+0.43\\-0.34}$		$26.7^{+7.2}_{-4.3}$	$0.34\substack{+0.13\\-0.08}$	1800	$8.4\substack{+0.5 \\ -0.7}$
$GW200216_220804$	81^{+20}_{-14}	$32.9\substack{+9.3 \\ -8.5}$	51^{+22}_{-13}	30^{+14}_{-16}	$0.10\substack{+0.34 \\ -0.36}$	$3.8^{+3.0}_{-2.0}$	$0.63\substack{+0.37 \\ -0.29}$	78^{+19}_{-13}	$0.70\substack{+0.14 \\ -0.24}$	2900	$8.1\substack{+0.4\\-0.5}$
$GW200219_094415$	$65.0^{+12.6}_{-8.2}$	$27.6\substack{+5.6 \\ -3.8}$	$37.5^{+10.1}_{-6.9}$	$27.9^{+7.4}_{-8.4}$	$-0.08\substack{+0.23\\-0.29}$	$3.4^{+1.7}_{-1.5}$	$0.57\substack{+0.22 \\ -0.22}$	$62.2\substack{+11.7\\-7.8}$	$0.66\substack{+0.10\\-0.13}$	700	$10.7\substack{+0.3 \\ -0.5}$
$GW200220_061928$	148^{+55}_{-33}	62^{+23}_{-15}	87^{+40}_{-23}	61^{+26}_{-25}	$0.06\substack{+0.40\\-0.38}$	$6.0^{+4.8}_{-3.1}$	$0.90\substack{+0.55 \\ -0.40}$	141^{+51}_{-31}	$0.71\substack{+0.15 \\ -0.17}$	3000	$7.2\substack{+0.4 \\ -0.7}$
GW200220_124850	67^{+17}_{-12}	$28.2\substack{+7.3 \\ -5.1}$	$38.9\substack{+14.1 \\ -8.6}$	$27.9^{+9.2}_{-9.0}$	$-0.07\substack{+0.27\\-0.33}$	$4.0^{+2.8}_{-2.2}$	$0.66\substack{+0.36\\-0.31}$	64^{+16}_{-11}	$0.67\substack{+0.11 \\ -0.14}$	3200	$8.5\substack{+0.3 \\ -0.5}$
$GW200224_222234$	$72.2\substack{+7.2 \\ -5.1}$	$31.1\substack{+3.2 \\ -2.6}$	$40.0\substack{+6.9 \\ -4.5}$	$32.5\substack{+5.0 \\ -7.2}$	$0.10\substack{+0.15 \\ -0.15}$	$1.71\substack{+0.49 \\ -0.64}$	$0.32\substack{+0.08\\-0.11}$	$68.6\substack{+6.6 \\ -4.7}$	$0.73\substack{+0.07 \\ -0.07}$	50	$20.0\substack{+0.2 \\ -0.2}$
$GW200225_060421$	$33.5^{+3.6}_{-3.0}$	$14.2^{+1.5}_{-1.4}$	$19.3\substack{+5.0 \\ -3.0}$	$14.0\substack{+2.8\\-3.5}$	$-0.12\substack{+0.17\\-0.28}$	$1.15\substack{+0.51 \\ -0.53}$	$0.22\substack{+0.09\\-0.10}$	$32.1^{+3.5}_{-2.8}$	$0.66\substack{+0.07\\-0.13}$	370	$12.5\substack{+0.3 \\ -0.4}$
$GW200302_{-}015811$	$57.8^{+9.6}_{-6.9}$	$23.4\substack{+4.7 \\ -3.0}$	$37.8^{+8.7}_{-8.5}$	$20.0\substack{+8.1 \\ -5.7}$	$0.01\substack{+0.25 \\ -0.26}$	$1.48\substack{+1.02 \\ -0.70}$	$0.28\substack{+0.16 \\ -0.12}$	$55.5\substack{+8.9 \\ -6.6}$	$0.66\substack{+0.13 \\ -0.15}$	6000	$10.8\substack{+0.3 \\ -0.4}$
GW200306_093714	$43.9^{+11.8}_{-7.5}$		$28.3\substack{+17.1 \\ -7.7}$	$14.8^{+6.5}_{-6.4} \\$	$0.32\substack{+0.28 \\ -0.46}$	$2.1^{+1.7}_{-1.1}$	$0.38\substack{+0.24 \\ -0.18}$	$41.7^{+12.3}_{-6.9}$	$0.78\substack{+0.11 \\ -0.26}$	4600	$7.8\substack{+0.4 \\ -0.6}$
$GW200308_{-}173609^{*}$	$50.6\substack{+10.9 \\ -8.5}$	$19.0\substack{+4.8 \\ -2.8}$	$36.4^{+11.2}_{-9.6}$		$0.65\substack{+0.17 \\ -0.21}$	$5.4\substack{+2.7 \\ -2.6}$	$0.83\substack{+0.32 \\ -0.35}$	$47.4^{+11.1}_{-7.7}$	$0.91\substack{+0.03 \\ -0.08}$	2000	$7.1\substack{+0.5 \\ -0.5}$
$GW200311_{-}115853$	$61.9^{+5.3}_{-4.2}$	$26.6^{+2.4}_{-2.0}$	$34.2\substack{+6.4 \\ -3.8}$	$27.7^{+4.1}_{-5.9}$	$-0.02\substack{+0.16\\-0.20}$	$1.17\substack{+0.28 \\ -0.40}$	$0.23\substack{+0.05 \\ -0.07}$	$59.0^{+4.8}_{-3.9}$	$0.69\substack{+0.07\\-0.08}$	35	$17.8\substack{+0.2 \\ -0.2}$
$GW200316_215756$	$21.2\substack{+7.2 \\ -2.0}$	$8.75\substack{+0.62 \\ -0.55}$	$13.1^{+10.2}_{-2.9}$	$7.8^{+1.9}_{-2.9}$	$0.13\substack{+0.27 \\ -0.10}$	$1.12\substack{+0.47\\-0.44}$	$0.22\substack{+0.08\\-0.08}$	$20.2\substack{+7.4 \\ -1.9}$	$0.70\substack{+0.04 \\ -0.04}$	190	$10.3\substack{+0.4 \\ -0.7}$
GW200322_091133*	55^{+37}_{-27}	$15.5\substack{+15.7 \\ -3.7}$	34^{+48}_{-18}	$14.0\substack{+16.8 \\ -8.7}$	$0.24\substack{+0.45 \\ -0.51}$	$3.6^{+7.0}_{-2.0}$	$0.60\substack{+0.84 \\ -0.30}$	53^{+38}_{-26}	$0.78\substack{+0.16 \\ -0.17}$	6500	$6.0^{+1.7}_{-1.2}$


Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

Binary black holes (BBHs)

- More than 90% of GW sources ever detected
- Strong GW signal
- Detectable frequency for current interferometric GW detectors
- Predictable waveforms
- Coalescence
 - Inspiral Merger Ringdown

M. Favata/SXS/K. Thorne

Stellar Dynamics

BBH Formation

• Evolution of stellar binary

The Hubble Heritage Team (AURA/STScI/NASA) NASA Headquarters - Greatest Image: of NASA (NASA-HQ-GRIN) nttp://nix.larc.nasa.gov/info;jessionid=1sl2so6lc9mab?id=GPN-2000-000933&orgid=12 http://imasrc.hubblesite.org/hu/db/images/hs-1999-25-a-full_tif.tif

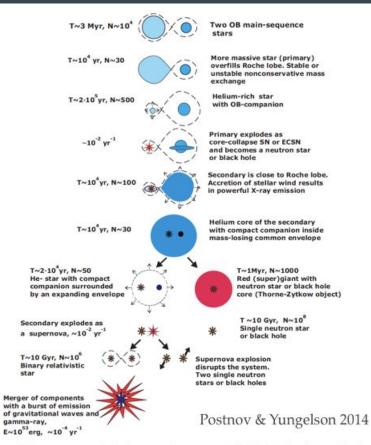
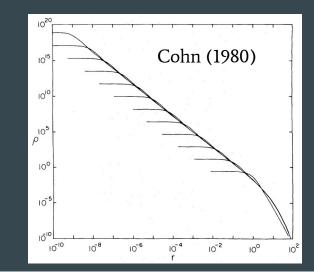
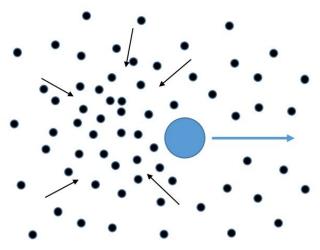


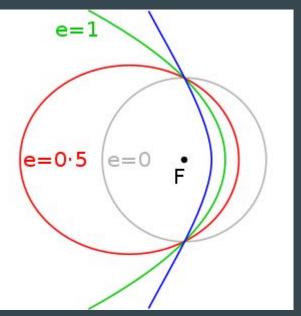
Figure 7: Evolutionary scenario for the formation of neutron stars or black holes in close binaries. T is the typical time scale of an evolutionary stage, N is the estimated number of objects in the given evolutionary stage.

BBH Formation


- Dynamical evolution of star cluster
 - Core collapse, Mass segregation
 - Binary formation, Binary heating
 - Hardening of binaries
 - Escape from cluster



Nuclear star cluster of Milky Way Stefan Gillessen, Reinhard Genzel, Frank Eisenhauerhttp://www.eso.org/public/outreach/press-rel/pr-2008/pr-46-08.ht



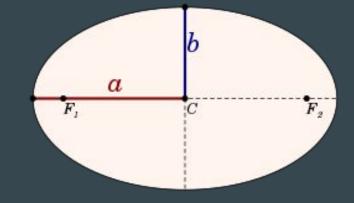
N-body system

- Dynamical system of many particles
 - Astronomy
 - Molecular dynamics
 - Fluid dynamics
 - Ecology and evolutionary biology
 - Economics
 - Human activities
 - ο.
- In Astronomy,
 - Planets, stars, galaxies, cosmology, ...

Two-body problem (in classical dynamics)

- System of two masses interacting through mutual gravitation
- Newton's law
- Analytical solution
 - Kepler orbit (point mass)
 - Circular, Elliptical, Parabolic, and Hyperbolic orbits

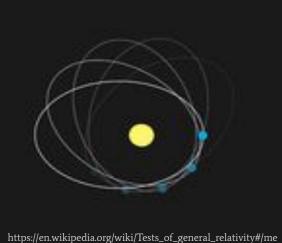
https://en.wikipedia.org/wiki/Kepler_orbit#/media/File: OrbitalEccentricityDemo.svg

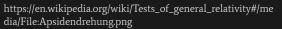

Two-body problem (in classical dynamics)

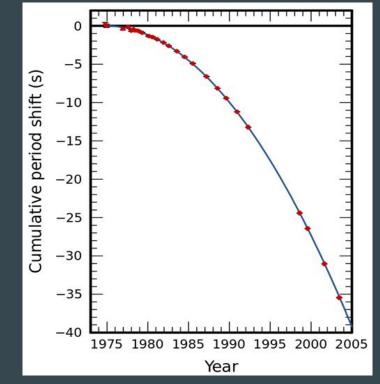
- Elliptic orbit
 - Semi-major (a), semi-minor (b) axis

$$a = \frac{r_{max} + r_{min}}{2}, \quad b = \sqrt{r_{max}r_{min}}$$

• Eccentricity


$$e = \sqrt{1 - \frac{b^2}{a^2}}$$
 $r_{min} = a(1 - e), \quad r_{max} = a(1 + e)$




• Orbital period

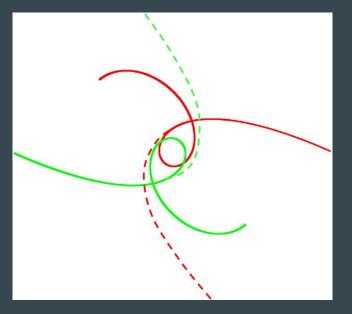
$$T = 2\pi \sqrt{\frac{a^3}{G(m_1 + m_2)}}$$

- Perihelion precession of Mercury's orbit
- Orbital decay of Hulse-Taylor binary pulsar

 $https://en.wikipedia.org/wiki/Hulse\%E2\%80\%93Taylor_pulsar#/media/File:PSR_B1913+16_period_shift_graph.svg$

- Einstein's theory of general relativity
- Considers gravitational effects due to the curvature of spacetime
- Test particle limit
 - Geodesic equation
 - Schwarzschild, Kerr metric
- Comparable mass
 - Approximation method for general relativity
 - Post-Newtonian, Post-Minkowskian, Effective-One-Body
 - Numerical relativity
- Spin effects

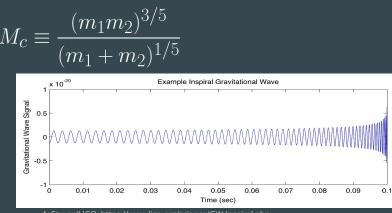
$$\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t} = -\frac{Gm}{r^2} \left[\left(1 + \mathcal{A} \right) \boldsymbol{n} + \mathcal{B} \, \boldsymbol{v} \right] + \mathcal{O} \left(\frac{1}{c^8} \right)$$

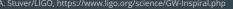

$$\begin{split} \mathcal{A} &= \frac{1}{c^2} \left\{ -\frac{3\dot{r}^2 \nu}{2} + v^2 + 3\nu v^2 - \frac{Gm}{r} \left(4 + 2\nu\right) \right\} \\ &+ \frac{1}{c^4} \left\{ \frac{15\dot{r}^4 \nu}{8} - \frac{45\dot{r}^4 \nu^2}{8} - \frac{9\dot{r}^2 \nu v^2}{2} + 6\dot{r}^2 \nu^2 v^2 + 3\nu v^4 - 4\nu^2 v^4 \right. \\ &+ \frac{Gm}{r} \left(-2\dot{r}^2 - 25\dot{r}^2 \nu - 2\dot{r}^2 \nu^2 - \frac{13\nu v^2}{2} + 2\nu^2 v^2 \right) + \frac{G^2 m^2}{r^2} \left(9 + \frac{87\nu}{4}\right) \right\} \\ &+ \frac{1}{c^5} \left\{ -\frac{24\dot{r}\nu v^2}{5} \frac{Gm}{r} - \frac{136\dot{r}\nu}{15} \frac{G^2 m^2}{r^2} \right\} \\ &+ \frac{1}{c^6} \left\{ -\frac{35\dot{r}^6 \nu}{16} + \frac{175\dot{r}^6 \nu^2}{16} - \frac{175\dot{r}^6 \nu^3}{16} + \frac{15\dot{r}^4 \nu v^2}{2} - \frac{135\dot{r}^4 \nu^2 v^2}{4} + \frac{255\dot{r}^4 \nu^3 v^2}{8} \right. \\ &- \frac{15\dot{r}^2 \nu v^4}{2} + \frac{237\dot{r}^2 \nu^2 v^4}{8} - \frac{45\dot{r}^2 \nu^3 v^4}{2} + \frac{11\nu v^6}{4} - \frac{49\nu^2 v^6}{4} + 13\nu^3 v^6 \\ &+ \frac{Gm}{r} \left(79\dot{r}^4 \nu - \frac{69\dot{r}^4 \nu^2}{2} - 30\dot{r}^4 \nu^3 - 121\dot{r}^2 \nu v^2 + 16\dot{r}^2 \nu^2 v^2 + 20\dot{r}^2 \nu^3 v^2 + \frac{75\nu v}{4} \\ &+ 8\nu^2 v^4 - 10\nu^3 v^4 \right) \\ &+ \frac{G^2 m^2}{r^2} \left(\dot{r}^2 + \frac{32573\dot{r}^2 \nu}{168} + \frac{11\dot{r}^2 \nu^2}{8} - 7\dot{r}^2 \nu^3 + \frac{615\dot{r}^2 \nu \pi^2}{64} - \frac{26987\nu v^2}{840} + \nu^3 v^2 \\ &- \frac{123\nu \pi^2 v^2}{64} - 110\dot{r}^2 \nu \ln \left(\frac{r}{r'_0} \right) + 22\nu v^2 \ln \left(\frac{r}{r'_0} \right) \right) \\ &+ \frac{G^3 m^3}{r^3} \left(-16 - \frac{437\nu}{4} - \frac{71\nu^2}{2} + \frac{41\nu \pi^2}{16} \right) \right\} \\ &+ \frac{1}{c^7} \left\{ \frac{Gm}{r} \dot{r} \left(\frac{366}{35} \nu v^4 + 12\nu^2 v^4 - 114v^2 \nu \dot{r}^2 - 12\nu^2 v^2 \dot{r}^2 + 112\nu \dot{r}^4 \right) \\ &+ \frac{G^2 m^2}{r^2} \dot{r} \left(\frac{692}{35} \nu v^2 - \frac{724}{15} v^2 \nu^2 + \frac{294}{5} \nu \dot{r}^2 + \frac{376}{5} \nu^2 \dot{r}^2 \right) \\ &+ \frac{G^3 m^3}{r^3} \dot{r} \left(\frac{3956}{35} \nu + \frac{184}{5} \nu^2 \right) \right\}, \end{split}$$

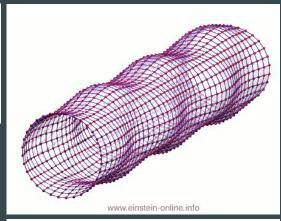
$$\begin{split} \mathcal{B} &= \frac{1}{c^2} \left\{ -4\dot{r} + 2\dot{r}\nu \right\} \\ &+ \frac{1}{c^4} \left\{ \frac{9\dot{r}^3\nu}{2} + 3\dot{r}^3\nu^2 - \frac{15\dot{r}\nu\nu^2}{2} - 2\dot{r}\nu^2\nu^2 + \frac{Gm}{r} \left(2\dot{r} + \frac{41\dot{r}\nu}{2} + 4\dot{r}\nu^2 \right) \right\} \\ &+ \frac{1}{c^5} \left\{ \frac{8\nu\nu^2}{5} \frac{Gm}{r} + \frac{24\nu}{5} \frac{G^2m^2}{r^2} \right\} \\ &+ \frac{1}{c^6} \left\{ -\frac{45\dot{r}^5\nu}{8} + 15\dot{r}^5\nu^2 + \frac{15\dot{r}^5\nu^3}{4} + 12\dot{r}^3\nu\nu^2 - \frac{111\dot{r}^3\nu^2\nu^2}{4} - 12\dot{r}^3\nu^3\nu^2 - \frac{65\dot{r}\nu\nu^4}{8} \right. \\ &+ 19\dot{r}\nu^2\nu^4 + 6\dot{r}\nu^3\nu^4 \\ &+ \frac{Gm}{r} \left(\frac{329\dot{r}^3\nu}{6} + \frac{59\dot{r}^3\nu^2}{2} + 18\dot{r}^3\nu^3 - 15\dot{r}\nu\nu^2 - 27\dot{r}\nu^2\nu^2 - 10\dot{r}\nu^3\nu^2 \right) \\ &+ \frac{G^2m^2}{r^2} \left(-4\dot{r} - \frac{18169\dot{r}\nu}{840} + 25\dot{r}\nu^2 + 8\dot{r}\nu^3 - \frac{123\dot{r}\nu\pi^2}{32} + 44\dot{r}\nu\ln\left(\frac{r}{r_0'}\right) \right) \right\} \\ &+ \frac{1}{c^7} \left\{ \frac{Gm}{r} \left(-\frac{626}{35}\nu\nu^4 - \frac{12}{5}\nu^2\nu^4 + \frac{678}{5}\nu\nu^2\dot{r}^2 + \frac{12}{5}\nu^2\nu^2\dot{r}^2 - 120\nu\dot{r}^4 \right) \\ &+ \frac{G^2m^2}{r^2} \left(\frac{164}{21}\nu\nu^2 + \frac{148}{5}\nu^2\nu^2 - \frac{82}{3}\nu\dot{r}^2 - \frac{848}{15}\nu^2\dot{r}^2 \right) \\ &+ \frac{G^3m^3}{r^3} \left(-\frac{1060}{21}\nu - \frac{104}{5}\nu^2 \right) \right\}. \end{split}$$

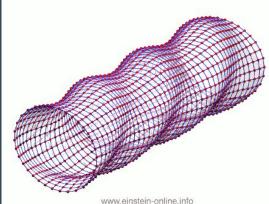
Blanchet (2014)

• Dynamical capture (Gravitational-wave capture)

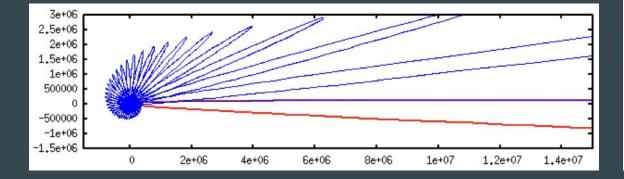

- Unbound orbit to bound orbit by emitting GWs
- Hyperbolic to elliptic orbit
- Energy radiation > orbital energy

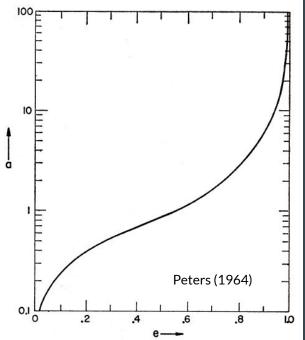


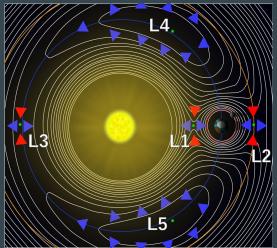

• GW radiation during the inspiral phase


$$h_{+} = \frac{A}{r} (1 + \cos^{2} i) \cos(2\pi f t) f^{2/2}$$
$$h_{\times} = \frac{2A}{r} \cos i \sin(2\pi f t) f^{2/3}$$

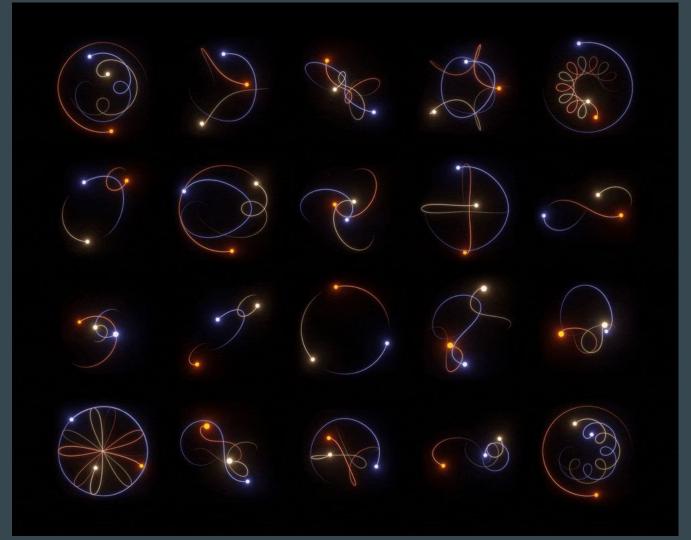
$$A = 2\frac{G^{5/3}}{c^4}\pi^{2/3}M_c^{5/3}, \quad N$$



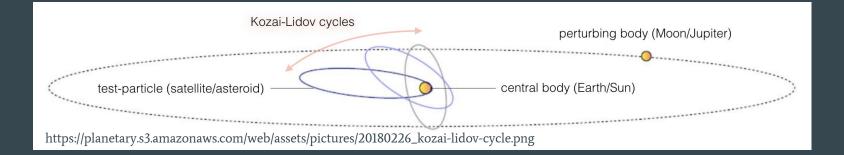




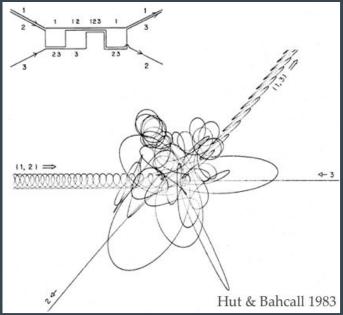
- Circularization
 - Decrease of eccentricity
 - Why the quasi-circular orbit is considered primarily in the current GW detector



- No general closed-form solution exists, generally chaotic.
- Restricted three-body problem
 - one negligible mass under two massive bodies
 - Lagrange points
- Special case solutions
 - Euler's collinear solution, Figure-eight shape, ...
- Numerical methods are required in general.



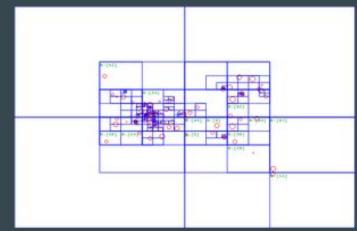
https://en.wikipedia.org/wiki/Lagrange_point#/media/F ile:Lagrange_points2.svg



https://en.wikipedia. org/wiki/Three-bod y_problem#/media/ File:5_4_800_36_do wnscaled.gif

- Kozai-Lidov mechanism
 - Hierarchical triple system: Perturber is far from the other two masses
 - Oscillations in the eccentricity and inclination of the inner binary's orbit
 - Conservation of z-component angular momentum
 - Eccentric merger of binary black holes

- Three-body process
 - Binary formation through the interactions of three or more bodies


• Binary-Single, Binary-Binary

N-body simulation

• N-body simulation

- Numerical approach is generally required for $N \ge 3$.
- \circ Direct N-body: O(N²) forces
- Tree method (Barnes-Hut algorithm), Particle mesh, ...
- Integration method
- Time stepping
- GPU

https://en.wikipedia.org/wiki/Barnes%E2%80%93Hut_simulation#/media/File:2D_ Quad-Tree_partitioning_of_100_bodies.png

Summary

- Binary compact stars, which are the main sources of gravitational waves, can form in dense star clusters.
- N-body simulation is required for investigating stellar dynamics within clusters.
- In studies of binary compact stars, relativistic effects should be taken into account.