2023.01.30 @ UNIST

2023 Winter School on Numerical Relativity and Gravitational Waves

2023 Competition on **Computational Astrophysics Problem** Chan Park (IBS)

Overview

- Development Routine
 - IDE: VS Code
 - Test: Jupyter Notebook
 - Submission: Git
 - Code Review
- Numerical Analysis
 - Finite Difference Method
 - Iterative Method
 - Multigrid Method
- Problems

Development Routine

- IDE: Integrated Development Environment
- It can open the filesystem of remote server through SSH.
- Supporting OS: Windows / Mac / Linux
- <u>https://code.visualstudio.com</u>

VS Code

Jupyter Notebook

- An interactive interface for Python through web
- In general, you can use any web browser in any OS.
- We will use jupyter notebook in VS Code to test codes.

- Version Control System
- Distribution of example code and submission of answer code are conducted by git.

Git

Network Diagram

Computer in UNIST Learning Commons

IBS Supercomputing Cluster

Numerical Analysis: Finite Difference Method

Discretization

- For function $f(x) : [a, b] \to \mathbb{R}$
- Uniform discretization

 - $f_i = f(x_i)$

• $x_i = ih$ for integer $0 \le i \le N$ and h = (b - a)/N where N is the number of cells

Derivatives by Finite Difference Method (FDM)

- Taylor Expansions

•
$$f_{i+1} = f(x_{i+1}) = f(x_i + h) = f(x_i) + hf'(x_i) + \frac{1}{2}h^2 f''(x_i) + \frac{1}{3!}h^3 f^{(3)}(x_i) + \frac{1}{6!}h^4 f^{(4)}(x_i) + O(h^5)$$

• $f_{i-1} = f(x_{i-1}) = f(x_i - h) = f(x_i) - hf'(x_i) + \frac{1}{2}h^2 f''(x_i) - \frac{1}{3!}h^3 f^{(3)}(x_i) + \frac{1}{6!}h^4 f^{(4)}(x_i) + O(h^5)$

• First-Order FDM

•
$$f'(x_i) = \frac{1}{h} (f_{i+1} - f_i) + O(h)$$

• Second-Order FDM

•
$$f'(x_i) = \frac{1}{2h} (f_{i+1} - f_{i-1}) + O(h^2)$$

• $f''(x) = \frac{1}{h^2} (f_{i+1} + f_{i-1} - 2f_i) + O(h^2)$

Elliptic PDE as a Sparse Matrix

- Simple Problem
 - Given $\frac{d^2f}{dx^2} = f''(x) = \rho(x)$ with the homogeneous boundary condition: f(a) = f(b) = 0, solve f(x)
- Second-Order Finite Difference Method

•
$$\frac{1}{h^2} \left(f_{i+1} + f_{i-1} - 2f_i \right) \simeq \rho_i$$

• In sparse matrix

• In principle, we can get f_i by the inverse of the above matrix.

Numerical Analysis: Iterative Method

Difficulties on Solving Linear System

• Linear System

- $Af = \rho \rightarrow f = A^{-1}\rho$
- Matrix inversion of large matrix requires a tremendous amount of calculation and storage space. Eventually solving in this way is almost impossible.
- We seek an approximate solution by iterative method instead of exact solution of the linear system.
- The error of approximate solution can be controlled as desired.

$$\begin{bmatrix} \rho_1 \\ \rho_2 \\ \vdots \\ \rho_{N-1} \end{bmatrix}$$

Gauss-Seidel Method

• From the FDM

•
$$\frac{1}{h^2} \left(f_{i+1} + f_{i-1} - 2f_i \right) \simeq \rho_i$$

• We get relaxation as

•
$$f_i \simeq \frac{1}{2} \left(f_{i+1} + f_{i-1} - \rho_i h^2 \right)$$

- We set iterative algorithm as
- For a number of steps

• For
$$i \in [1,N)$$

•
$$f_i \leftarrow \frac{1}{2} \left(f_{i+1} + f_{i-1} - \rho_i h^2 \right)$$

0		i-1	i	i+1	
0		f[i-1]	<pre> f[i] < </pre>	f[i+1]	
	• • •		rho[i]		

Jacobian Method

- For a number of steps
 - For $i \in [1,N)$ • $f_i^{\text{new}} \leftarrow \frac{1}{2} \left(f_{i+1} + f_{i-1} - \rho_i h^2 \right)$
 - switch (f_i^{new}, f_i)

i	
f	
f_new	
rho	

0	 i-1	i	i+1	
0	 f[i-1]	f[i]	f[i+1]	
	 2	f_new[i]		
		rho[i]		

Red-Black Ordering Method

- For a number of steps
 - For $i \in [1,N)$ by step 2
 - $f_i \leftarrow \frac{1}{2} \left(f_{i+1} + f_{i-1} \rho_i h^2 \right)$
 - For $i \in [2,N)$ by step 2

•
$$f_i \leftarrow \frac{1}{2} \left(f_{i+1} + f_{i-1} - \rho_i h^2 \right)$$

i	0	1	2	 N-2	N-1	
f	0	• • •	•••	 • • •		
rho				 		

• Example

- $\rho(x) = -\pi^2 \sin(\pi x)$
- Exact Solution
 - $f(x) = \sin(\pi x)$
- Number of Cells
 - N = 100
- As the number of iteration increases, the numerical solution converges to $\sin(\pi x)$.

Result

- Residual
 - $r = \rho Af$ goes to 0 when f converges to the solution
- Exact error
 - $e = \overline{f} f$ where \overline{f} is the exact solution
- Relation between the exact error and the residual
 - Ae = r because $A\bar{f} = \rho$
- Solving Ae = r is equivalent to solving the original equation $Af = \rho$

Residual

How to measure the convergence when we don't know an exact solution?

Numerical Analysis: Multigrid

Difficulties on High Frequency Modes

- Residual-Error equation
 - Ae = r
- An error of m mode is decay by the factor λ_m
 - $(\lambda_m)^n$ where *n* is the number of iterations
- Can we devise a method that efficiently decay low mode errors?
- How about to use a coarse grid?

20

 $\int f^{(0)}$

- TwoGrid (f, ρ)
 - relax (f, ρ)
 - $r \leftarrow residual of f$
 - $r^H \leftarrow$ restriction of r

•
$$e^H \leftarrow 0$$

- solve $Ae^H = r^H$
- $e \leftarrow \text{interpolation of } e^H$
- $f \leftarrow f + e$
- relax (f, ρ)

Multigrid Method

- Recursive two-grid method
- In the most coarse grid, only once iteration solves exactly.
- MultiGrid (f, ρ, n)
 - if n = 1 then relax (f, ρ) and return
 - relax (f, ρ)
 - $r \leftarrow residual of f$
 - $r^H \leftarrow$ restriction of r
 - $e^H \leftarrow 0$
 - MultiGrid $(e^H, r^H, n-1)$
 - $e \leftarrow \text{interpolation of } e^H$

 - $f \leftarrow f + e$ relax (f, ρ)

Linear Interpolation

- Interpolation (f^h, f^H)
 - For $i \in [1,N)$
 - If *i* is even then

•
$$f_i^h \leftarrow f_{i/2}^H$$

•
$$f_i^h \leftarrow \frac{1}{2} \left(f_{\lfloor i/2 \rfloor}^H + f_{\lfloor i/2 \rfloor+1}^H \right)$$
 $a = x_0$

Full Weighting Restriction

- Restriction (f^H, f^h)
 - For $i \in [1,N)$ • $f_i^h \leftarrow \frac{1}{4} f_{2i-1}^H + \frac{1}{2} f_{2i}^H + \frac{1}{4} f_{2i+1}^H$ $a = x_0$
- It is adjoint to the interpolation in the sense

•
$$\left\langle a^{H} | R_{h}^{H} b^{h} \right\rangle = \left\langle b^{h} | I_{H}^{h} a^{H} \right\rangle$$

 $a = x_0$

Problem

Problem I

- 1-1. Iterative Relaxation: 20 pt
- 1-2. Interpolation: 10 pt
- 1-3. Restriction: 10 pt
- 1-4. Multigrid Method: 30 pt
- 1-5. Black Hole: 30 pt

Let's start the competition!!