
1

AI for Science
Hyungon Ryu | NVAITC Korea

수치상대론및중력파겨울학교
계산천체물리경진대회2023

2

NVIDIA AI TECHNOLOGY CENTER (NVAITC)

Singapore (AP HQ)

Taiwan

SJTU

Shanghai

Monash Uni

Melbourne

Hong Kong

Luxembourg

Chulalongkorn

(Thailand)

IIT

Hyderabad

Finland

Italy

Catalyse AI transformation through research-centric integrated engagements

GIST

(Korea)

Legend

Centers

Joint Lab

Brazil

Florida

7

- GPU accelerated Simulation

- GPU Acceleation
- AI for Science

- DATA DRIVEN APPROACH

- PINN APPROACH

- NVIDIA MODULUS

NVIDIA HPC SDK
Download at developer.nvidia.com/hpc-sdk

Develop for the NVIDIA HPC Platform: GPU, CPU and Interconnect

HPC Libraries | GPU Accelerated C++ and Fortran | Directives | CUDA

HOW GPU ACCELERATION WORKS

Application Code

+

GPU CPU
5% of Code

Compute-Intensive Functions

Rest of Sequential
CPU Code

GPU ACCELERATED MATH LIBRARIES

cuSOLVER

BF16, TF32 and FP64
Tensor Cores

CUTLASS

BF16 & TF32 Support

cuTENSOR

BF16, TF32 and FP64
Tensor Cores

CUDA Math API

Increased memory BW,
Shared Memory & L2

cuSPARSE

Increased memory BW,
Shared Memory & L2

cuFFT

BF16, TF32 and FP64
Tensor Cores

cuBLAS

BF16, TF32 and FP64
Tensor Cores

nvJPEGCUDA Math APIcuFFT

cuSPARSE cuSOLVERcuBLAS cuTENSOR

nvJPEGCUTLASS

Hardware Decoder

N-WAYS TO GPU PROGRAMMING
Math Libraries | Standard Languages | Directives | CUDA

Incremental Performance

Optimization with Directives

Maximize GPU Performance with

CUDA C++/Fortran

GPU Accelerated

C++ and Fortran

std::transform(par, x, x+n, y, y,
[=](float x, float y) {

return y + a*x;
});

#pragma acc data copy(x,y)
{

...

std::transform(par, x, x+n, y, y,
[=](float x, float y) {

return y + a*x;
});

...

}

__global__
void saxpy(int n, float a,

float *x, float *y) {
int i = blockIdx.x*blockDim.x +

threadIdx.x;
if (i < n) y[i] += a*x[i];

}

int main(void) {
cudaMallocManaged(&x, ...);
cudaMallocManaged(&y, ...);
...
saxpy<<<(N+255)/256,256>>>(...,x, y)
cudaDeviceSynchronize();
...

}

do concurrent (i = 1:n)
y(i) = y(i) + a*x(i)

enddo

GPU Accelerated Math Libraries

CUPY (GPU ACCELERATED PYTHON)
correlation

%%file main_cupy.py

import nvtx

import numpy as np

import cupy as cp

from numpy.random import rand

from cupyx.scipy.fft import rfft, irfft

#from pyfftw.interfaces.numpy_fft import rfft, irfft

import nvtx

import time

from numpy import deg2rad

from h5py import File as h5_File

def haversine_cupy(lon1, lat1, lon2, lat2):

"""

Return the great circle distance (degree) between two points.

"""

convert decimal degrees to radians

import cupy as cp

from cupy import deg2rad

lon1, lat1, lon2, lat2 = deg2rad(lon1), deg2rad(lat1), deg2rad(lon2), deg2rad(lat2)

haversine formula

dlon = lon2 - lon1

dlat = lat2 - lat1

s1 = cp.sin(dlat*0.5)

s2 = cp.sin(dlon*0.5)

a = s1*s1 + cp.cos(lat1) * cp.cos(lat2) * s2 * s2

c = cp.rad2deg(2.0 * cp.arcsin(cp.sqrt(a)))

return c # degree

https://colab.research.google.com/drive/1zohf3Y-8g7Sv-2UkmDjIPW-
eMMJYtgng?usp=sharing#scrollTo=ZdygwcMmlwH6

numpy

cupy

fftw

cufft

https://colab.research.google.com/drive/1zohf3Y-8g7Sv-2UkmDjIPW-eMMJYtgng?usp=sharing#scrollTo=ZdygwcMmlwH6

RAPIDS
GPU accelerated Data Science

pandas

cudf

Sci-kit learn

cuml

OpenACC Directives

Manage

Data

Movement

Initiate

Parallel

Execution

Optimize

Loop

Mappings

#pragma acc data copyin(a,b) copyout(c)
{

...
#pragma acc parallel
{
#pragma acc loop gang vector

for (i = 0; i < n; ++i) {
c[i] = a[i] + b[i];
...

}
}
...

}

• CPU, GPU, Manycore

• Performance portable

• Interoperable

• Single source

• Incremental

GPU Accelerated CFD
OpenFOAM + PETSc + AmgX

▪ Early results of the AmgX solver library used to accelerate the
OpenFOAM pressure solve on GPUs achieved ~4x to ~8x
speedups

NBODY SIMULATION
MD simulation COSMOS

AI FOR SCIENCE[DATA DRIVEN APPROACH]

LLM(LARGE LANGUAGE MODEL)

Image from https://lifearchitect.ai/models/Image from https://hanlab.mit.edu/projects/efficientnlp_old/

420 node DGX-1(8EA A100)

https://lifearchitect.ai/models/
https://hanlab.mit.edu/projects/efficientnlp_old/

MODEL CAPABILITIES WITH SCALES

Compute
Resource

Model
Param

DataToken

4 Epochs

2d Steady State Flow with Neural Network

https://www.autodeskresearch.com/publications/convolutional-neural-networks-steady-flow-approximation
Xiaoxiao Guo, Wei Li, Francesco Iorio, Convolutional Neural Networks for Steady Flow Approximation , ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2016

Pair of (2D domain,

Simulated CFD flow)

https://www.autodeskresearch.com/publications/convolutional-neural-networks-steady-flow-approximation

23

AUTOMOTIVE AERODYNAMICS

Inference
Training

EARTH-2 BEGAN BY EXPLORING
DATA-DRIVEN WEATHER
PREDICTION

▪ FourCastNet

▪ Scope Global, Medium Range

▪ Model Type Full-Model AI Surrogate

▪ Architecture AFNO (Adaptive Fourier Neural Op.)

▪ Resolution: 25km

▪ Training Data: ERA5 Reanalysis

▪ Initial Condition GFS / UFS

▪ Inference Time 0.25 sec (2-week forecast)

▪ Speedup vs NWP O(104-105)

▪ Power Savings O(104)

FourCastNet

AFNO
backbone

input predict

20 variables

20ch x 720H x 1440W

20ch x (8x8)p x 90H

x180W

GT

loss

(input : K)
20 variables

predict
20 variables

(GT : K + 6hr)
20 variables

Pair of (input, GT)

8x8 patch

5TB
ERA5

26

FOURIER NEURAL OPERATOR

This tutorial sets up a data-driven model for a 2D Darcy flow using the Fourier Neural Operator (FNO) architecture inside
of Modulus. It covers these details:

1. Loading grid data and setting up data-driven constraints

2. How to create a grid validator node

3. How to use Fourier Neural Operator architecture in Modulus

This problem develops a surrogate model that learns the mapping between a permeability field and the pressure field of a
Darcy system governed by the elliptic PDE:

27

FOURIER NEURAL OPERATOR
Results

FNO accurately learns the
solution of this system.

Modulus supports the
visualization of results through
images (matplotlib),
Tensorboard, VTK files and
Omniverse for select problems.

For more information, please
refer to the official Modulus
user guide example.

https://docs.nvidia.com/deeplearning/modulus/user_guide/neural_operators/darcy_fno.html

28

Ryan Keisler’s GNN model

ERA5 dataset
1979~2020(6yr test), 3hr interval
1d(360x180)
full variables
- 6 var 13 pres, [TZQUVW]
- 4 surf variable

2d rec graph

GNN

enc-dec arch.
2 enc + 6 dec layer

Multilevel(1d~3d)

6.7M params
5.5 day 1ea GPU

29

Huawei Pangu-Weather
https://arxiv.org/pdf/2211.02556.pdf

ERA5 dataset
1979~2017(39yr), 6hr interval(leadtime)
0.25d(1440x721)
full variables
- 5 var 13 pres,
- 4 surf variable

2d rec

TF

Swin transformer
enc-dec arch.

2 enc + 6 dec layer

Train : 15 day, 192EA V100

30

Huawei Pangu-Weather Result and insight

Temporal Error Pressure level

2018 Kong-rey

31

Google DeepMind GraphCast
https://arxiv.org/abs/2212.12794

2d rec graph

multigrid

1979~2018, 6hr interval
0.25d(1440x721)
full variables
- 6 var 37 pres,
- 5 surf variable

GNN

10-day forecast (at 6-hour steps) in under 60 seconds

TPU based, no opensource

Enc-dec arch

ALPHAFOLD2
Predict 3D Structure of Protein

MEGAMOLBART

▪ MegaMolBART is a deep learning model for small molecule drug
discovery and cheminformatics based on SMILES. MegaMolBART uses
NVIDIA’s Megatron framework, designed to develop large transformer
models.

▪ The ZINC-15 database is used for pre-training. Approximately 1.45 Billion
molecules (SMILES strings) were selected from tranches meeting the
following constraints: molecular weight <= 500 Daltons, LogP <= 5,
reactivity level was “reactive”, and purchasability was “annotated”.
SMILES formats, including chirality notations, are used as-is from ZINC.

https://zinc15.docking.org/tranches/home/

G2NET GRAVITATIONAL WAVE DETECTION
https://www.kaggle.com/c/g2net-gravitational-wave-detection

GW or notDNN

Noisy signal

Feature

engineering

Correlation(DTW)

Denoising

MFCC/MEL Spectrogram

Augmentation

Multi variate

obversation

GW Detector

Simulated chirp signal

https://www.kaggle.com/c/g2net-gravitational-wave-detection

GW_ODW_2019 EXAMPLE
Synthetic GW

from pycbc.waveform import get_td_waveform

sample_rate = 4*1024 # samples per second

data_length = 32 # seconds

apx = 'IMRPhenomD'

GW170809

hp1, _ = get_td_waveform(approximant=apx,

mass1=35.0,

mass2=23.8,

delta_t=1.0/sample_rate,

f_lower=25)

hp1 = hp1 / max(numpy.correlate(hp1,hp1, mode='full'))**0.5

pylab.figure(figsize=(16,4))

pylab.title("The waveform hp1")

pylab.plot(hp1.sample_times, hp1, color='red')

pylab.xlabel('Time (s)')

pylab.ylabel('Normalized amplitude')

waveform_start = numpy.random.randint(0, len(data) - len(hp1))

data[waveform_start:waveform_start+len(hp1)] += 10 * hp1.numpy()

COMPARE TO AUDIO PROCESSING
RIR(simulator)

def do_rir_generator(file_name, target_path, save_filename, srt, distance, theta, jitters=0):

from librosa.core import load as wfload

data, sr = wfload(file_name, sr = srt, mono=True)

#adjust distance

distance_adj = dB_distance_diff(60,4.99,distance)

data = volume_slider(data,distance_adj)

#adjust angle

m1_angle, m2_angle=mic_angle(theta=theta)

left_adj = cardiod_2d(alpha=0.5, angle=m1_angle+jitters)

right_adj = cardiod_2d(alpha=0.5, angle=m2_angle+jitters)

data_left =data * left_adj

data_right=data * right_adj

data_left=float_to_pcm16(data_left)

data_right=float_to_pcm16(data_right)

data_stereo=np.vstack((data_left, data_right))

save_wave_file_rir(data_stereo, srt, target_path , save_filename, distance, theta, jitters)

return data_stereo

def volume_slider(signal, dB):

signal = signal*gain_scaler(dB)

return signal

def mic_angle(theta=0, m1=-45, m2=45, dis_mic=0.039):

recv_angle_m1 = theta+m1

recv_angle_m2 = theta-(180-m2)

return recv_angle_m1, recv_angle_m2

def cardiod_2d(alpha=0.5, angle=5):

radians = np.deg2rad(angle)

alpha=0.5

result=1

result = alpha * (1. + np.cos(radians))

return round(result,4)

Cardiac

Simulator

mono recording

L

R

COMPARE TO AUDIO PROCESSING
add noise

Voice

Drone noise

drill noise

Hammer noise

Windy

effect

cardioid

engine noise

COMPARE TO AUDIO PROCESSING
ASR Pipeline

waveform
Mel

Spectrogram
Augment DL LM

STFT SpecAug

RoomSimulator

Pitch

Normalization CNN+LSTM

ConTextNet

SE

Transformer

CTC loss

RNN-T

GT
Text

predict
Phoneme

predict
Text

GT
Phoneme

input

H1, L1 preprocess DL output postprocess
final

output

MODULES FOR DL

Dataset

Train recipe
Data Loader

preprocessing

Model

Task

Objective

Resource

DLFW

DevOps

Pytorch, TF, Keras, DGL, PyG, JAX, pennylane, TorchANI

WanDB, ignite, torchlightening,

Learning rate schedule(Cosine, warm up), early stopping

Optimizer(Adam), accumulation

MSE, Cross Entropy, Dice, triplet, contrative

Multistage, multi modal, end2end, Pretrain/finetune, distill, quantization

Regression, CLS, AE, GAN, Prompt, LM, AR, MLM, denoising, jigsaw, SuperRes

Model : ResNet, EfficientNet, Unet, Hifi-GAN, transformer, BERT, BART, GPT-2, GPT-3 , NERF

Module : Pool, Conv, LSTM, GRU, FCN, MLA, GNN, softmax, GeLU, ReLU, Residual, Skip

Variation : Prenorm, postnorm,

Dali, stream

Augment, patch

Tokenizer, normalizer

OS(Ubuntu,WSL2), PIP, Conda, Singularity, Docker,

slurm/PBS/LSF, jupyter, NFS, Baremetal/Virtual, Ansible

GPU, TensorCore, multiGPU, MultiNode, IB,

Image, WSI, X-ray/MRI,

Lanauge(audio,text), video, 3D, stereo,

Chemical, Protein, CFD

Pair of (Input,Output)

(Image, Optical Flow)

(text, image), (image, cls)

(audio, text)

application

Paperwithcode, github

NEMO, RIVA, MONAI, Hugginface

timm, einops,

Demo only

Paper only

With sample

With code

With dataset

With Checkpoint

DL Model

Technique
AMP, Data Parallel, Model Parallel, Quantization, hash, parameter

sharing, checkpointing, ZeRO,

EXAMPLES

Task : ASR

Data pair : In:audio, Out : text

Dataset : LibriLight

Augmentation : SpecAug

DataLoader : Nemo
System : 2 node DGX-1 (8EA A100 80GB)

OS : Ubuntu

DLFW : pytorch on singularity, slurm

Task : ASR

Model : ContextNet(Conv, SELayer)(NEMO)

Recipe : train with warm up

Task : lung CT segmentation

Data pair : In:CT raw, Out : Segmentation

Dataset : COVID19-CT-Dataset

Augmentation : none

DataLoader : nefti reader(MONAI)

System : 1 node (2EA RTX8000 40GB)

OS : Ubuntu

DLFW : pytorch on NGC docker

Task : 3D segmentation

Model : Unet(MONAI)

Optimizer : Adam

Recipe : train with warm upHealthcare

Audio

TRANSFORMERS

emb

encoder decoder

input

output

emb

Encoder

Projection

input

output

Transformer Bert

emb

Decoder

Projection

input

output

LM(GPT)

Transformer IN Various Domain

TTS(LSTM) TTS(transformer)

Neural Speech Synthesis with Transformer Network(2019)

https://arxiv.org/pdf/1809.08895.pdf

Chemical(transformer)
MolBART

https://arxiv.org/pdf/1809.08895.pdf

Various Transformer Layers

Lite Transformer
Evolved Transformer(NAS)

Replace
FF, MHA

Change order

Sparse Attention
Axial Attention
Graph Attention

Quaternion Transformer

Longformer
Linformer
Reformer
Performer

Vision Transformer(ViT) ICLR2021

TRANSFORMERS

Attention Is All You Need

MHA

dense

dense
Feed

Forward

dense

dense

Feed
Forward

MHA KQV

Nx

BERT BASE

Pos : 512

numVOCA= 2^15

NumLayers: 12

dimModel : 768

dimHead :64

NumHeads : 12

Act : gelu

Dropout : 0.1

FF scale : 4

110M Param

BERT BASE BERT LARGE

Pos : 512

numVOCA= 2^15

NumLayers: 24

dimModel 1024

dimHead :64

NumHeads : 16

Act : gelu

Dropout : 0.1

FF scale : 4

340M Param

Emb/Pos

MHA
MHA

MHA
MHA

4096

1024

512

1024

1024

MLP-Mixer

MLP-Mixer: An all-MLP Architecture for Vision

https://arxiv.org/pdf/2105.01601.pdf

https://arxiv.org/pdf/2105.01601.pdf

REVISIT MLP

flatten
raw

1d input

MLP
sigmoid

MLP

encoded
1d input

layernorm
dropout

relu/gelu

repeat n
residual

Softmax
Onehot

encoding

CNN

2d input
features
2d conv

relu

softmax

Onehot
encoding

MLP-MixerTransformer

Residual
SELayer

MLP(new)

AFNO (ICLR 2022)
Adaptive Fourier Neural Operators

MLP-Mixer with FFT

FourCastNet
https://arxiv.org/pdf/2202.11214.pdf

Use AFNO for weather modeling(NWP)
FourCastNet generates a week-long forecast in
less than 2 seconds
FourCastNet is about 45,000 times faster than
traditional NWP models on a node-hour basis

https://arxiv.org/pdf/2202.11214.pdf

PINN

53

MODULUS IN A GLANCE.

FourCastNet

Data-driven Approach
Data-assimilation / Physics-informed approach for Weather

54

PHYSICS INFORMED NEURAL NETS: ARCHITECTURE

54

A Neural Network Architecture for Computational Mechanics/Physics problems

❑ Point Cloud for 3D Geometries & Meshes (Fixed/Moving, Deforming, Structured & Unstructured)

❑ Physics Driven & Physics Aware Networks (respects the governing PDEs, Multi-disciplinary)

❑ Performance optimized for GPU tensor cores

PINN - Physics Informed Neural

Networks
Point Cloud representation of

Computational Domain & Data on 3D

Geometries

55

SHAPE PARAMETERIZATION

• Voxels

• Multi-View

✓ Point Cloud

• Poly Cube

• Good for CNNs but memory intensive for high

resolution, cannot represent geometry well and has

quantization effects

• Unable to capture fine geometry details & gradients

and completely unsuitable for Physics problems

• 1:1 correspondence with analysis data format

• Works for uneven density and unstructured meshes.

Perfect for Physics problems

• Will require integration into CAD tools in order to

regenerate uniform mesh and then invokes CNN

• Will retain the deficiencies of Voxel based CNNs

• Does not address legacy analysis results

56

CFD

(turbulent)

Fluid-Solid Interface Conditions

Temperature

Heat Flux

Heat Transfer

in Fluid

Heat Transfer

in Solid

PINN Network Architecture

10 layers for non-Physics Informed Network

10 x 2n layers for nth order PDEs

50 neurons per layer

Swish Activation Function

Multi-Physics PDEs

CFD (with turbulence) – 2nd Order PDE

Heat Transfer in Solids & Fluid

AI TRAINING ENGINE
Multi-Physics Neural Networks

57

EXTERNAL FLOW PAST A CYLINDER –
LEARNT VS. GROUND TRUTH
CFD Simulation of an

External Flow over a

Cylinder with OpenFOAM –

A user error was incidentally

discovered by the PINNs that

presented itself as a

mismatch between the

Simulation & AI result !!!

Correct CFD Simulation

Results with OpenFOAM

(Ground Truth)

Correct Predictions

58

MEDICAL IMAGING: INTRACRANIAL CEREBRAL ANEURYSM
(ICA)

59

ICA – COMPARISON BETWEEN SIMULATION & NN

Cut along Z-

Plane
Cut along Y-

Plane

Cut along X-Plane

60

ICA – COMPARISON BETWEEN TWO CFD SOLVERS

OpenFOAM v/s Neural

Networks

Nektar++ v/s Neural Networks

➢ Nektar++ is a higher fidelity

solver (implicit, h- & p- method

based finite element CFD code)

and provides higher quality

results with less diffusion

61

HEAT SINK

Heat Sink –

* Temperatures to not exceed the design criteria

Objectives –

* Similar accuracy as the Solver

* Geometry representation with Point Clouds

* Multiple simultaneous parametrized &

unparametrized geometries

Physics involved – CFD & Heat Transfer

Ansys IcePack used for Simulation (** we kindly acknowledge Ansys’s support **)

6262

HEAT SINK – CONJUGATE HEAT TRANSFER

Mean Square Error

Loss

6363

HEAT SINK – CONJUGATE HEAT TRANSFER

Turbulence modeled

64

VISUALIZATION
Trained Model Generates Interactive Design Feedback

A 5-Fin Heat Sink solved using AI Workflow

65

FPGA HEAT SINK
Interactive Design Space Exploration with AI

SimNet Simulation Ansys Icepack Simulation

Total compute time for 2500

cases (design evaluation)

~2 hours (3 secs for each

evaluation on a Volta GPU)

>100 days (60 mins on 12 Intel Xeon Gold

6128 CPU cores @ 3.40GHz)

Memory (each case) 216 MB 64 GB

Results file size (each case) ~ 0.5 GB < 2 GB

Results - The difference in max. temperature at the heat source between SimNet and Ansys

Icepack is similar to the difference between solvers

• Interactive design space exploration is enabled using AI based on Physics informed Neural

Networks,

• Multi-Physics (involving CFD & Heat Transfer) heat sink problem solved using end-to-end AI

approach

• No training dataset required, only parameterized geometry and boundary conditions

MODULUS: Promise of PINNs

A PROBLEM WITH NNS AND THE PROMISE OF PINNS

▪

A PROBLEM WITH NNS AND THE PROMISE OF PINNS
Data Only vs PINN: Solving The Data Problem

▪

A PROBLEM WITH NNS AND THE PROMISE OF PINNS
Data Only vs PINN: Loss Function

Field Data Only Field Data + Physics

Point Cloud

A PROBLEM WITH NNS AND THE PROMISE OF PINNS
Sample Applications of PINNs

HEAT SINK
Geometry Optimization

Coupled heat transfer and fluid flow

SIEMENS ENERGY
Heat Recovery Steam Generation

Computational Fluid Dynamics

Coupled flows/physics

SIEMENS GAMESA
Turbine Placement and Life

Computational Fluid Dynamics

NETL
Power Plant Boiler

Computational Fluid Dynamics

Heat Transfer

Chemical Reactions

A PROBLEM WITH NNS AND THE PROMISE OF PINNS
Ongoing Physics-ML Use Cases + Personas: Energy Only

▪ Pavel Dimitrov

▪ Siemens Gamesa (Akshay Subramaniam, Modulus)

▪ Siemens Energy T&D: Bushing

▪ RTE / SystemeX: Michelin Tire …

▪ Shell (Farah Hariri) CFD for Wind Turbines

▪ Shourya Otta

▪ Siemens Energy FMS (Fatigue…)

▪ GE Research

▪ Stenosis

▪ Baker Hughes

▪ Turbo machinery

▪ Additive manufacturing (Mohammad Nabian, Modulus)

▪ BMW

▪ Design optimization: cabin flow

▪ Oliver Hennigh (Modulus team): NETL (power plant boiler)

▪ (Mostly) Internal Projects

▪ Clement Etienam

▪ Reservoir Simulation and Inversion (PINNs)

▪ Harpreet Sethi

▪ FNOs for seismic processing: wave equation “solver” and inversion

▪ Jihyun Yang

▪ FNOs for brain imaging: wave equation + inversion

▪ Partner/Customer Personas

▪ Researcher LinkedIn (SGRE: Greg Oxley)

▪ Research Manager LinkedIn (SE: Georg, Stefan, Shell: Mohammed)

MODULUS: ANATOMY OF A PROJECT

MODULUS: ANATOMY OF A PROJECT
What is Modulus?

▪ Modulus is a tool to build (differentiable!) Python
functions that satisfy constraints such as

▪ Adherence to field data

▪ Partial Differential Equations

▪ Etc.

▪ Modulus works by:

▪ Writing functions (models) as symbolic expressions
which include at least one adaptable function (a NN)

▪ Writing objective functions as a combination of these
models

▪ Describing the geometry where the models should be
evaluated

▪ Minimizing the objective functions by using the
provided data, by sampling the geometry, or both

▪ Running the models to obtain the desired effect

▪ The following (partial) list of problems can be solved
with this workflow as a side-effect:

▪ Train a Neural Network model from data alone

▪ Obtain a (differentiable!) function that satisfies a PDE
with no field data

▪ Obtain best-fit (differentiable!) function that satisfies
a PDE using field data

▪ Represent PDE boundary conditions through data
loosely or exactly

▪ Parameterize the solutions of a PDE

▪ Inverse problems—e.g., solve for parameters of a
function or PDE

▪ Etc.

MODULUS: ANATOMY OF A PROJECT
What is Modulus?

▪ Modulus is a tool to build (differentiable!) Python
functions that satisfy constraints such as

▪ Adherence to field data

▪ Partial Differential Equations

▪ Etc.

▪ Modulus works by:

▪ Writing functions (models) as symbolic expressions
which include at least one adaptable function (a NN)

▪ Writing objective functions as a combination of these
models

▪ Describing the geometry where the models should be
evaluated

▪ Minimizing the objective functions by using the
provided data, by sampling the geometry, or both

▪ Running the models to obtain the desired effect

1. Function Declarations

2. Domain Geometry

3. Loss / Constraint Declarations

4. Auxiliary Validation / Inference

MODULUS: ANATOMY OF A PROJECT
What is Modulus?

1. Function Declarations

2. Domain Geometry

3. Loss / Constraint Declarations

4. Auxiliary Validation / Inference

Point Cloud Generator over [-1,1]

MODULUS: ANATOMY OF A PROJECT
What is Modulus?

▪ 1. Function Declarations

2. Domain Geometry

3. Loss / Constraint Declarations

4. Auxiliary Validation / Inference

NN declarations

net = instantiate_arch(

input_keys=[Key("x")],

output_keys=[Key("u")],

cfg=cfg.arch.fully_connected,

)

Symbolic Function Declarations

x = Symbol('x’)

writing directly

eq = Function("u")(x).diff(x).diff(x).diff(x)

using PDE library

diff = Diffusion(T="v", D=1.0, Q=-1, dim=1, time=False)

Aggregate all function declarations in nodes list (required)

used below in Constraint Declarations

nodes = diff.make_nodes()

nodes += [net.make_node(name=f"diff_net0", jit=cfg.jit)]

MODULUS: ANATOMY OF A PROJECT
What is Modulus?

Step 2. Domain Definition: Geometry

▪ Modulus provides Constructive Solid Geometry tools to
describe the geometry by hand

▪ Modulus can import STL files for complex 3D
geometries (e.g., aneurysm example)

▪ The geometry objects can sample both interior and
boundaries (1-D less than interior) to generate the physics-
informed point cloud for training or inference

1. Function Declarations

2. Domain Geometry

3. Loss / Constraint Declarations

4. Auxiliary Validation / Inference

from modulus.geometry.csg.csg_2d import Rectangle

from modulus.geometry.csg.csg_1d import Line1D

from modulus.geometry.csg.csg_3d import Box

STL geometry

from modulus.geometry.tessellation.tessellation import Tessellation

writing directly

read stl files to make geometry

point_path = to_absolute_path("./stl_files")

inlet_mesh = Tessellation.from_stl(

point_path + "/aneurysm_inlet.stl", airtight=False

)

outlet_mesh = Tessellation.from_stl(

point_path + "/aneurysm_outlet.stl", airtight=False

)

https://docs.nvidia.com/deeplearning/modulus/user_guide/intermediate/adding_stl_files.html

MODULUS: ANATOMY OF A PROJECT
What is Modulus?

Step 3. Build the Objective Function to Minimize

▪ The final objective function is created by adding
constraints to the problem domain; there are many
types

▪ PointwiseBoundaryConstraint

▪ PointwiseInteriorConstraint

▪ PointwiseConstraint.from_numpy – field data

▪ IntegralConstraint

▪ Etc.

▪ Each pointwise constraint requires:

▪ The function declarations from Step 1

▪ The geometry object to generate the point cloud

▪ The name of the equation from Step 1 and its required
value(s) (e.g., diffusion_u)

▪ Optionally, the type of pointwise aggregation (L2 norm
by default, but Lp for any p available)

▪ Modulus sums all loss functions by default, but that can
be modified

1. Function Declarations

2. Domain Geometry

3. Loss / Constraint Declarations

4. Auxiliary Validation / Inference

make domain

domain = Domain()

define data constraints -- at least one type needed

a, b = 1, 2

tt = np.array([-1,-1, 1, 1])

yy = np.array([a, a, b, b])

supervised = PointwiseConstraint.from_numpy(

nodes=nodes,

invar={"x": tt.reshape(-1,1)}, outvar={"u": yy.reshape(-1,1)},

batch_size=4

)

domain.add_constraint(supervised, "supervised")

interior (Physics) cinstraint

interior = PointwiseInteriorConstraint(

nodes=nodes, geometry=line,

outvar={"diffusion_u": 0},

batch_size=cfg.batch_size.interior,

bounds={x: (-1.0,1.0)},

)

domain.add_constraint(interior, "interior")

MODULUS: ANATOMY OF A PROJECT
What is Modulus?

▪ 1. Function Declarations

2. Domain Geometry

3. Loss / Constraint Declarations

4. Auxiliary Validation / Inference

xx = np.arange(-1,1, 1/100)

in_vars = {"x": xx.reshape(-1,1)}

inferencer = PointwiseInferencer(

in_vars,

[‘g’, ‘g__x’],

nodes,

batch_size=256,

plotter=Plotter(), # Plot results in Tensorboard

)

domain.add_inferencer(inferencer)

OMNIVERSE – TOOL FOR BUILDING METAVERSE APPLICATIONS

Path Tracing

MDL

Physic

s
AI

Project Reviewer

- View

Toy Jensen

Omniverse

Designer – 3ds

Max, Substance

Architect – Revit,

Rhino

NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

82

	Slide 1: AI for Science
	Slide 2: NVIDIA AI TECHNOLOGY CENTER (NVAITC)
	Slide 7
	Slide 8: NVIDIA HPC SDK
	Slide 9: How GPU Acceleration Works
	Slide 10: Gpu accelerated Math libraries
	Slide 11: N-WAYS to gpu programming
	Slide 12: Cupy (GPU accelerated python)
	Slide 13: RAPIDS
	Slide 14
	Slide 15: OpenACC Directives
	Slide 17: GPU Accelerated CFD
	Slide 18: Nbody simulation
	Slide 19
	Slide 20: LLM(Large Language Model)
	Slide 21: Model Capabilities with scales
	Slide 22: 2d Steady State Flow with Neural Network
	Slide 23: Automotive Aerodynamics
	Slide 24: Earth-2 Began by Exploring Data-Driven Weather Prediction
	Slide 25: FourCastNet
	Slide 26: FOURIER NEURAL OPERATOR
	Slide 27: FOURIER NEURAL OPERATOR
	Slide 28: Ryan Keisler’s GNN model
	Slide 29: Huawei Pangu-Weather
	Slide 30: Huawei Pangu-Weather Result and insight
	Slide 31: Google DeepMind GraphCast
	Slide 32: Alphafold2
	Slide 33: MegaMolBART
	Slide 34: G2Net Gravitational wave detection
	Slide 35: GW_ODW_2019 example
	Slide 36: Compare to Audio processing
	Slide 37: Compare to Audio processing
	Slide 38: Compare to Audio processing
	Slide 39: Modules for DL
	Slide 40: Examples
	Slide 41: Transformers
	Slide 42: Transformer in various domain
	Slide 43: Various Transformer layers
	Slide 44: Vision Transformer(Vit) ICLR2021
	Slide 45: Transformers
	Slide 46: BERT BASE
	Slide 47: MLP-Mixer
	Slide 48: Revisit mlp
	Slide 49: AFNO (ICLR 2022)
	Slide 50: FourCastNet
	Slide 52
	Slide 53: MODULUS IN A GLANCE.
	Slide 54: Physics Informed Neural Nets: Architecture
	Slide 55: Shape Parameterization
	Slide 56
	Slide 57: External Flow past a Cylinder – Learnt vs. Ground Truth
	Slide 58: MEDICAL IMAGING: Intracranial Cerebral Aneurysm (ICA)
	Slide 59: ICA – Comparison between Simulation & NN
	Slide 60: ICA – Comparison between two CFD Solvers
	Slide 61: Heat Sink
	Slide 62: Heat Sink – Conjugate Heat Transfer
	Slide 63: Heat Sink – Conjugate Heat Transfer
	Slide 64
	Slide 65
	Slide 67
	Slide 68: A PROBLEM WITH NNS AND THE PROMISE OF PINNS
	Slide 69: A PROBLEM WITH NNS AND THE PROMISE OF PINNS
	Slide 70: A PROBLEM WITH NNS AND THE PROMISE OF PINNS
	Slide 71: A PROBLEM WITH NNS AND THE PROMISE OF PINNS
	Slide 72: A PROBLEM WITH NNS AND THE PROMISE OF PINNS
	Slide 73
	Slide 74: MODULUS: ANATOMY OF A PROJECT
	Slide 75: MODULUS: ANATOMY OF A PROJECT
	Slide 76: MODULUS: ANATOMY OF A PROJECT
	Slide 77: MODULUS: ANATOMY OF A PROJECT
	Slide 78: MODULUS: ANATOMY OF A PROJECT
	Slide 79: MODULUS: ANATOMY OF A PROJECT
	Slide 80: MODULUS: ANATOMY OF A PROJECT
	Slide 81: Omniverse – Tool for Building METAVERSE APPLICATIONs
	Slide 82

