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- GPU accelerated Simulation

- GPU Acceleation
- AI for Science 

- DATA DRIVEN APPROACH

- PINN APPROACH

- NVIDIA MODULUS



NVIDIA HPC SDK
Download at developer.nvidia.com/hpc-sdk

Develop for the NVIDIA HPC Platform: GPU, CPU and Interconnect

HPC Libraries | GPU Accelerated C++ and Fortran | Directives | CUDA



HOW GPU ACCELERATION WORKS

Application Code

+

GPU CPU
5% of Code

Compute-Intensive Functions

Rest of Sequential
CPU Code



GPU ACCELERATED MATH LIBRARIES

cuSOLVER

BF16, TF32 and FP64 
Tensor Cores

CUTLASS

BF16 & TF32 Support

cuTENSOR

BF16, TF32 and FP64 
Tensor Cores

CUDA Math API

Increased memory BW,
Shared Memory & L2

cuSPARSE

Increased memory BW,
Shared Memory & L2

cuFFT

BF16, TF32 and FP64 
Tensor Cores

cuBLAS

BF16, TF32 and FP64 
Tensor Cores

nvJPEGCUDA Math APIcuFFT

cuSPARSE cuSOLVERcuBLAS cuTENSOR

nvJPEGCUTLASS

Hardware Decoder



N-WAYS TO GPU PROGRAMMING
Math Libraries | Standard Languages | Directives | CUDA

Incremental Performance 

Optimization with Directives

Maximize GPU Performance with 

CUDA C++/Fortran

GPU Accelerated

C++ and Fortran

std::transform(par, x, x+n, y, y,
[=](float x, float y) {

return y + a*x;
});

#pragma acc data copy(x,y) 
{

...

std::transform(par, x, x+n, y, y,
[=](float x, float y) {

return y + a*x;
});

...

}

__global__ 
void saxpy(int n, float a, 

float *x, float *y) { 
int i = blockIdx.x*blockDim.x + 

threadIdx.x; 
if (i < n) y[i] += a*x[i]; 

} 

int main(void) { 
cudaMallocManaged(&x, ...);
cudaMallocManaged(&y, ...);
...
saxpy<<<(N+255)/256,256>>>(...,x, y)
cudaDeviceSynchronize();
...

}

do concurrent (i = 1:n)
y(i) = y(i) + a*x(i)

enddo

GPU Accelerated Math Libraries



CUPY ( GPU ACCELERATED PYTHON)
correlation

%%file main_cupy.py

import nvtx

import numpy as np

import cupy as cp

from numpy.random import rand

from cupyx.scipy.fft import rfft, irfft

#from pyfftw.interfaces.numpy_fft import rfft, irfft

import nvtx

import time

from numpy import deg2rad

from h5py import File as h5_File

def haversine_cupy(lon1, lat1, lon2, lat2):

"""

Return the great circle distance (degree) between two points.

"""

# convert decimal degrees to radians

import cupy as cp

from cupy import deg2rad

lon1, lat1, lon2, lat2 = deg2rad(lon1), deg2rad(lat1), deg2rad(lon2), deg2rad(lat2)

# haversine formula

dlon = lon2 - lon1

dlat = lat2 - lat1

s1 = cp.sin(dlat*0.5)

s2 = cp.sin(dlon*0.5)

a = s1*s1 + cp.cos(lat1) * cp.cos(lat2) * s2 * s2

c = cp.rad2deg( 2.0 * cp.arcsin(cp.sqrt(a)) )

return c # degree

https://colab.research.google.com/drive/1zohf3Y-8g7Sv-2UkmDjIPW-
eMMJYtgng?usp=sharing#scrollTo=ZdygwcMmlwH6

numpy

cupy

fftw

cufft

https://colab.research.google.com/drive/1zohf3Y-8g7Sv-2UkmDjIPW-eMMJYtgng?usp=sharing#scrollTo=ZdygwcMmlwH6


RAPIDS
GPU accelerated Data Science

pandas

cudf

Sci-kit learn

cuml





OpenACC Directives

Manage

Data

Movement

Initiate

Parallel

Execution

Optimize

Loop

Mappings

#pragma acc data copyin(a,b) copyout(c)
{

...
#pragma acc parallel 
{
#pragma acc loop gang vector

for (i = 0; i < n; ++i) {
c[i] = a[i] + b[i];
...

}
}
...

}

• CPU, GPU, Manycore

• Performance portable

• Interoperable

• Single source

• Incremental



GPU Accelerated CFD
OpenFOAM + PETSc + AmgX

▪ Early results of the AmgX solver library used to accelerate the 
OpenFOAM pressure solve on GPUs achieved ~4x to ~8x 
speedups



NBODY SIMULATION
MD simulation COSMOS



AI FOR SCIENCE[DATA DRIVEN APPROACH]



LLM(LARGE LANGUAGE MODEL)

Image from https://lifearchitect.ai/models/Image from https://hanlab.mit.edu/projects/efficientnlp_old/

420 node DGX-1(8EA A100) 

https://lifearchitect.ai/models/
https://hanlab.mit.edu/projects/efficientnlp_old/


MODEL CAPABILITIES WITH SCALES

Compute
Resource

Model
Param

DataToken

4 Epochs



2d Steady State Flow with Neural Network

https://www.autodeskresearch.com/publications/convolutional-neural-networks-steady-flow-approximation
Xiaoxiao Guo, Wei Li, Francesco Iorio, Convolutional Neural Networks for Steady Flow Approximation , ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2016 

Pair of (2D domain, 

Simulated CFD flow)

https://www.autodeskresearch.com/publications/convolutional-neural-networks-steady-flow-approximation
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AUTOMOTIVE AERODYNAMICS 

Inference
Training



EARTH-2 BEGAN BY EXPLORING 
DATA-DRIVEN WEATHER 
PREDICTION

▪ FourCastNet

▪ Scope Global, Medium Range

▪ Model Type Full-Model AI Surrogate

▪ Architecture AFNO (Adaptive Fourier Neural Op.)

▪ Resolution: 25km

▪ Training Data: ERA5 Reanalysis

▪ Initial Condition GFS / UFS

▪ Inference Time 0.25 sec (2-week forecast)

▪ Speedup vs NWP O(104-105)

▪ Power Savings O(104)



FourCastNet

AFNO
backbone

input predict

20 variables

20ch x 720H x 1440W

20ch x (8x8)p x 90H 

x180W 

GT

loss

(input : K)
20 variables

predict
20 variables

(GT : K + 6hr)
20 variables

Pair of (input, GT)

8x8 patch

5TB
ERA5
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FOURIER NEURAL OPERATOR

This tutorial sets up a data-driven model for a 2D Darcy flow using the Fourier Neural Operator (FNO) architecture inside 
of Modulus. It covers these details:

1. Loading grid data and setting up data-driven constraints

2. How to create a grid validator node

3. How to use Fourier Neural Operator architecture in Modulus

This problem develops a surrogate model that learns the mapping between a permeability field and the pressure field of a 
Darcy system governed by the elliptic PDE:
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FOURIER NEURAL OPERATOR
Results

FNO accurately learns the 
solution of this system.

Modulus supports the 
visualization of results through 
images (matplotlib), 
Tensorboard, VTK files and 
Omniverse for select problems.

For more information, please 
refer to the official Modulus 
user guide example.

https://docs.nvidia.com/deeplearning/modulus/user_guide/neural_operators/darcy_fno.html
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Ryan Keisler’s GNN model

ERA5 dataset
1979~2020(6yr test), 3hr interval
1d(360x180)
full variables
- 6 var 13 pres, [TZQUVW]
- 4 surf variable

2d rec graph

GNN

enc-dec arch.
2 enc + 6 dec layer

Multilevel(1d~3d)

6.7M params
5.5 day 1ea GPU
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Huawei Pangu-Weather
https://arxiv.org/pdf/2211.02556.pdf

ERA5 dataset
1979~2017(39yr), 6hr interval(leadtime)
0.25d(1440x721)
full variables
- 5 var 13 pres, 
- 4 surf variable

2d rec

TF

Swin transformer
enc-dec arch.

2 enc + 6 dec layer

Train : 15 day, 192EA V100
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Huawei Pangu-Weather Result and insight

Temporal Error Pressure level

2018 Kong-rey
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Google DeepMind GraphCast
https://arxiv.org/abs/2212.12794

2d rec graph

multigrid

1979~2018, 6hr interval
0.25d(1440x721)
full variables
- 6 var 37 pres, 
- 5 surf variable

GNN

10-day forecast (at 6-hour steps) in under 60 seconds

TPU based, no opensource

Enc-dec arch



ALPHAFOLD2 
Predict 3D Structure of Protein



MEGAMOLBART

▪ MegaMolBART is a deep learning model for small molecule drug 
discovery and cheminformatics based on SMILES. MegaMolBART uses 
NVIDIA’s Megatron framework, designed to develop large transformer 
models.

▪ The ZINC-15 database is used for pre-training. Approximately 1.45 Billion 
molecules (SMILES strings) were selected from tranches meeting the 
following constraints: molecular weight <= 500 Daltons, LogP <= 5, 
reactivity level was “reactive”, and purchasability was “annotated”. 
SMILES formats, including chirality notations, are used as-is from ZINC.

https://zinc15.docking.org/tranches/home/


G2NET GRAVITATIONAL WAVE DETECTION
https://www.kaggle.com/c/g2net-gravitational-wave-detection

GW or notDNN

Noisy signal

Feature 

engineering

Correlation(DTW)

Denoising

MFCC/MEL Spectrogram

Augmentation

Multi variate 

obversation

GW Detector

Simulated chirp signal

https://www.kaggle.com/c/g2net-gravitational-wave-detection


GW_ODW_2019 EXAMPLE
Synthetic GW

from pycbc.waveform import get_td_waveform

sample_rate = 4*1024 # samples per second

data_length = 32 # seconds

apx = 'IMRPhenomD'

# GW170809

hp1, _ = get_td_waveform(approximant=apx,

mass1=35.0,

mass2=23.8,

delta_t=1.0/sample_rate,

f_lower=25)

hp1 = hp1 / max(numpy.correlate(hp1,hp1, mode='full'))**0.5

pylab.figure( figsize=(16,4) )

pylab.title("The waveform hp1")

pylab.plot(hp1.sample_times, hp1, color='red')

pylab.xlabel('Time (s)')

pylab.ylabel('Normalized amplitude')

waveform_start = numpy.random.randint(0, len(data) - len(hp1))

data[waveform_start:waveform_start+len(hp1)] += 10 * hp1.numpy()



COMPARE TO AUDIO PROCESSING
RIR(simulator)

def do_rir_generator(file_name, target_path, save_filename, srt, distance, theta, jitters=0):

from librosa.core import load as wfload

data, sr = wfload(file_name, sr = srt, mono=True)

#adjust distance

distance_adj = dB_distance_diff(60,4.99,distance)

data = volume_slider(data,distance_adj)

#adjust angle

m1_angle, m2_angle=mic_angle(theta=theta)

left_adj = cardiod_2d(alpha=0.5, angle=m1_angle+jitters )

right_adj = cardiod_2d(alpha=0.5, angle=m2_angle+jitters )

data_left =data * left_adj

data_right=data * right_adj

data_left=float_to_pcm16(data_left)

data_right=float_to_pcm16(data_right)

data_stereo=np.vstack((data_left, data_right))

save_wave_file_rir(data_stereo, srt, target_path , save_filename, distance, theta, jitters )

return data_stereo

def volume_slider(signal, dB):

signal = signal*gain_scaler(dB)

return signal

def mic_angle(theta=0, m1=-45, m2=45, dis_mic=0.039):

recv_angle_m1 = theta+m1

recv_angle_m2 = theta-(180-m2)

return recv_angle_m1, recv_angle_m2

def cardiod_2d(alpha=0.5, angle=5):

radians = np.deg2rad(angle)

alpha=0.5

result=1

result = alpha * (1. + np.cos(radians))

return round(result,4)

Cardiac

Simulator

mono recording

L

R



COMPARE TO AUDIO PROCESSING
add noise

Voice

Drone noise

drill noise

Hammer noise

Windy

effect

cardioid

engine noise



COMPARE TO AUDIO PROCESSING
ASR Pipeline 

waveform
Mel

Spectrogram
Augment DL LM

STFT SpecAug

RoomSimulator

Pitch

Normalization CNN+LSTM

ConTextNet

SE

Transformer

CTC loss

RNN-T

GT
Text

predict
Phoneme

predict
Text

GT
Phoneme

input

H1, L1 preprocess DL output postprocess
final

output



MODULES FOR DL

Dataset

Train recipe
Data Loader

preprocessing

Model

Task

Objective

Resource

DLFW

DevOps

Pytorch, TF, Keras, DGL, PyG, JAX, pennylane, TorchANI

WanDB, ignite,  torchlightening, 

Learning rate schedule(Cosine, warm up), early stopping

Optimizer(Adam), accumulation

MSE, Cross Entropy, Dice, triplet, contrative

Multistage, multi modal, end2end, Pretrain/finetune, distill, quantization

Regression, CLS, AE, GAN, Prompt, LM, AR,  MLM, denoising, jigsaw, SuperRes

Model : ResNet, EfficientNet, Unet, Hifi-GAN, transformer, BERT, BART, GPT-2, GPT-3 , NERF

Module : Pool, Conv,  LSTM, GRU,  FCN, MLA, GNN, softmax, GeLU, ReLU, Residual, Skip

Variation : Prenorm, postnorm, 

Dali, stream

Augment, patch

Tokenizer, normalizer

OS(Ubuntu,WSL2), PIP, Conda, Singularity, Docker, 

slurm/PBS/LSF, jupyter, NFS, Baremetal/Virtual, Ansible

GPU, TensorCore, multiGPU, MultiNode, IB, 

Image, WSI, X-ray/MRI, 

Lanauge(audio,text), video, 3D, stereo,  

Chemical, Protein, CFD

Pair of (Input,Output)

(Image, Optical Flow)

(text, image), (image, cls)

(audio, text)

application

Paperwithcode, github

NEMO, RIVA, MONAI, Hugginface

timm, einops,

Demo only

Paper only

With sample

With code 

With dataset

With Checkpoint

DL Model

Technique
AMP, Data Parallel, Model Parallel, Quantization, hash, parameter 

sharing, checkpointing, ZeRO,



EXAMPLES 

Task : ASR

Data pair : In:audio, Out : text

Dataset  : LibriLight

Augmentation : SpecAug

DataLoader : Nemo
System : 2 node DGX-1 ( 8EA A100 80GB)

OS : Ubuntu 

DLFW : pytorch on singularity, slurm

Task : ASR

Model : ContextNet(Conv, SELayer)(NEMO)

Recipe : train with warm up

Task : lung CT segmentation

Data pair : In:CT raw, Out : Segmentation 

Dataset  : COVID19-CT-Dataset

Augmentation : none

DataLoader : nefti reader(MONAI)

System : 1 node ( 2EA RTX8000 40GB)

OS : Ubuntu 

DLFW : pytorch on NGC docker

Task : 3D segmentation

Model : Unet(MONAI)

Optimizer : Adam

Recipe : train with warm upHealthcare

Audio



TRANSFORMERS

emb

encoder decoder

input

output

emb

Encoder

Projection

input

output

Transformer Bert

emb

Decoder

Projection

input

output

LM(GPT)



Transformer IN Various Domain

TTS(LSTM) TTS(transformer)

Neural Speech Synthesis with Transformer Network(2019)

https://arxiv.org/pdf/1809.08895.pdf

Chemical(transformer)
MolBART

https://arxiv.org/pdf/1809.08895.pdf


Various Transformer Layers

Lite Transformer
Evolved Transformer(NAS)

Replace 
FF, MHA

Change order

Sparse Attention
Axial Attention
Graph Attention

Quaternion Transformer

Longformer
Linformer
Reformer
Performer



Vision Transformer(ViT) ICLR2021



TRANSFORMERS

Attention Is All You Need 

MHA

dense

dense
Feed

Forward

dense

dense

Feed
Forward

MHA KQV

Nx



BERT BASE

Pos : 512

numVOCA= 2^15

NumLayers:  12

dimModel : 768 

dimHead :64

NumHeads : 12

Act : gelu

Dropout : 0.1

FF scale : 4 

110M Param

BERT BASE BERT LARGE

Pos : 512

numVOCA= 2^15

NumLayers: 24

dimModel 1024 

dimHead :64

NumHeads : 16

Act : gelu

Dropout : 0.1

FF scale : 4 

340M Param

Emb/Pos

MHA
MHA

MHA
MHA

4096

1024

512

1024

1024



MLP-Mixer

MLP-Mixer: An all-MLP Architecture for Vision

https://arxiv.org/pdf/2105.01601.pdf

https://arxiv.org/pdf/2105.01601.pdf


REVISIT MLP

flatten
raw

1d input

MLP
sigmoid

MLP

encoded 
1d input

layernorm
dropout

relu/gelu

repeat n
residual

Softmax
Onehot

encoding

CNN

2d input
features
2d conv

relu

softmax

Onehot
encoding

MLP-MixerTransformer

Residual
SELayer

MLP(new)



AFNO (ICLR 2022)
Adaptive Fourier Neural Operators

MLP-Mixer with FFT



FourCastNet
https://arxiv.org/pdf/2202.11214.pdf

Use AFNO for weather modeling(NWP)
FourCastNet generates a week-long forecast in 
less than 2 seconds
FourCastNet is about 45,000 times faster than 
traditional NWP models on a node-hour basis

https://arxiv.org/pdf/2202.11214.pdf


PINN 
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MODULUS IN A GLANCE.

FourCastNet

Data-driven Approach
Data-assimilation / Physics-informed approach for Weather
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PHYSICS INFORMED NEURAL NETS: ARCHITECTURE

54

A Neural Network Architecture for Computational Mechanics/Physics problems

❑ Point Cloud for 3D Geometries & Meshes (Fixed/Moving, Deforming, Structured & Unstructured)

❑ Physics Driven & Physics Aware Networks (respects the governing PDEs, Multi-disciplinary) 

❑ Performance optimized for GPU tensor cores

PINN - Physics Informed Neural 

Networks
Point Cloud representation of 

Computational Domain & Data on 3D 

Geometries
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SHAPE PARAMETERIZATION

• Voxels

• Multi-View

✓ Point Cloud

• Poly Cube 

• Good for CNNs but memory intensive for high 

resolution, cannot represent geometry well and has 

quantization effects

• Unable to capture fine geometry details & gradients 

and completely unsuitable for Physics problems

• 1:1 correspondence with analysis data format

• Works for uneven density and unstructured meshes. 

Perfect for Physics problems

• Will require integration into CAD tools in order to 

regenerate uniform mesh and then invokes CNN 

• Will retain the deficiencies of Voxel based CNNs

• Does not address legacy analysis results 
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CFD 

(turbulent)

Fluid-Solid Interface Conditions

Temperature

Heat Flux

Heat Transfer 

in Fluid

Heat Transfer 

in Solid

PINN Network Architecture 

10 layers for non-Physics Informed Network

10 x 2n layers for nth order PDEs

50 neurons per layer

Swish Activation Function  

Multi-Physics PDEs

CFD (with turbulence) – 2nd Order PDE

Heat Transfer in Solids & Fluid

AI TRAINING ENGINE
Multi-Physics Neural Networks
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EXTERNAL FLOW PAST A CYLINDER –
LEARNT VS. GROUND TRUTH 
CFD Simulation of an 

External Flow over a 

Cylinder with OpenFOAM –

A user error was incidentally 

discovered by the PINNs that  

presented itself as a 

mismatch between the 

Simulation & AI result !!!

Correct CFD Simulation 

Results with OpenFOAM

(Ground Truth)

Correct Predictions
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MEDICAL IMAGING: INTRACRANIAL CEREBRAL ANEURYSM 
(ICA) 
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ICA – COMPARISON BETWEEN SIMULATION & NN

Cut along Z-

Plane
Cut along Y-

Plane

Cut along X-Plane
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ICA – COMPARISON BETWEEN TWO CFD SOLVERS

OpenFOAM v/s Neural 

Networks

Nektar++ v/s Neural Networks

➢ Nektar++ is a higher fidelity 

solver (implicit, h- & p- method 

based finite element CFD code) 

and provides higher quality 

results with less diffusion
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HEAT SINK

Heat Sink –

* Temperatures to not exceed the design criteria

Objectives –

* Similar accuracy as the Solver 

* Geometry representation with Point Clouds

* Multiple simultaneous parametrized & 

unparametrized geometries

Physics involved – CFD & Heat Transfer 

Ansys IcePack used for Simulation (** we kindly acknowledge Ansys’s support **)
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HEAT SINK – CONJUGATE HEAT TRANSFER   

Mean Square Error

Loss 
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HEAT SINK – CONJUGATE HEAT TRANSFER   

Turbulence modeled
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VISUALIZATION
Trained Model Generates Interactive Design Feedback

A 5-Fin Heat Sink solved using AI Workflow
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FPGA HEAT SINK
Interactive Design Space Exploration with AI

SimNet Simulation Ansys Icepack Simulation

Total compute time for 2500 

cases (design evaluation) 

~2 hours (3 secs for each 

evaluation on a Volta GPU)

>100 days (60 mins on 12 Intel Xeon Gold

6128 CPU cores @ 3.40GHz)

Memory (each case) 216 MB 64 GB

Results file size (each case) ~ 0.5 GB < 2 GB

Results - The difference in max. temperature at the heat source between SimNet and Ansys 

Icepack is similar to the difference between solvers

• Interactive design space exploration is enabled using AI based on Physics informed Neural 

Networks, 

• Multi-Physics (involving CFD & Heat Transfer) heat sink problem solved using end-to-end AI 

approach

• No training dataset required, only parameterized geometry and boundary conditions



MODULUS: Promise of PINNs



A PROBLEM WITH NNS AND THE PROMISE OF PINNS

▪



A PROBLEM WITH NNS AND THE PROMISE OF PINNS
Data Only vs PINN: Solving The Data Problem

▪



A PROBLEM WITH NNS AND THE PROMISE OF PINNS
Data Only vs PINN: Loss Function

Field Data Only Field Data + Physics

Point Cloud



A PROBLEM WITH NNS AND THE PROMISE OF PINNS
Sample Applications of PINNs

HEAT SINK
Geometry Optimization

Coupled heat transfer and fluid flow

SIEMENS ENERGY
Heat Recovery Steam Generation

Computational Fluid Dynamics

Coupled flows/physics

SIEMENS GAMESA
Turbine Placement and Life

Computational Fluid Dynamics

NETL
Power Plant Boiler

Computational Fluid Dynamics

Heat Transfer

Chemical Reactions



A PROBLEM WITH NNS AND THE PROMISE OF PINNS
Ongoing Physics-ML Use Cases + Personas: Energy Only

▪ Pavel Dimitrov

▪ Siemens Gamesa (Akshay Subramaniam, Modulus)

▪ Siemens Energy T&D: Bushing

▪ RTE / SystemeX: Michelin Tire …

▪ Shell (Farah Hariri) CFD for Wind Turbines

▪ Shourya Otta

▪ Siemens Energy FMS (Fatigue…)

▪ GE Research 

▪ Stenosis

▪ Baker Hughes

▪ Turbo machinery

▪ Additive manufacturing (Mohammad Nabian, Modulus)

▪ BMW

▪ Design optimization: cabin flow

▪ Oliver Hennigh (Modulus team): NETL (power plant boiler)

▪ (Mostly) Internal Projects

▪ Clement Etienam

▪ Reservoir Simulation and Inversion (PINNs)

▪ Harpreet Sethi

▪ FNOs for seismic processing: wave equation “solver” and inversion

▪ Jihyun Yang

▪ FNOs for brain imaging: wave equation + inversion

▪ Partner/Customer Personas

▪ Researcher LinkedIn (SGRE: Greg Oxley)

▪ Research Manager LinkedIn (SE: Georg, Stefan, Shell: Mohammed)



MODULUS: ANATOMY OF A PROJECT



MODULUS: ANATOMY OF A PROJECT
What is Modulus?

▪ Modulus is a tool to build (differentiable!) Python 
functions that satisfy constraints such as

▪ Adherence to field data

▪ Partial Differential Equations

▪ Etc.

▪ Modulus works by:

▪ Writing functions (models) as symbolic expressions 
which include at least one adaptable function (a NN)

▪ Writing objective functions as a combination of these 
models

▪ Describing the geometry where the models should be 
evaluated

▪ Minimizing the objective functions by using the 
provided data, by sampling the geometry, or both

▪ Running the models to obtain the desired effect

▪ The following (partial) list of problems can be solved 
with this workflow as a side-effect:

▪ Train a Neural Network model from data alone

▪ Obtain a (differentiable!) function that satisfies a PDE 
with no field data

▪ Obtain best-fit (differentiable!) function that satisfies 
a PDE using field data

▪ Represent PDE boundary conditions through data 
loosely or exactly

▪ Parameterize the solutions of a PDE

▪ Inverse problems—e.g., solve for parameters of a 
function or PDE

▪ Etc.



MODULUS: ANATOMY OF A PROJECT
What is Modulus?

▪ Modulus is a tool to build (differentiable!) Python 
functions that satisfy constraints such as

▪ Adherence to field data

▪ Partial Differential Equations

▪ Etc.

▪ Modulus works by:

▪ Writing functions (models) as symbolic expressions 
which include at least one adaptable function (a NN)

▪ Writing objective functions as a combination of these 
models

▪ Describing the geometry where the models should be 
evaluated

▪ Minimizing the objective functions by using the 
provided data, by sampling the geometry, or both

▪ Running the models to obtain the desired effect

1. Function Declarations

2. Domain Geometry

3. Loss / Constraint Declarations

4. Auxiliary Validation / Inference



MODULUS: ANATOMY OF A PROJECT
What is Modulus?

1. Function Declarations

2. Domain Geometry

3. Loss / Constraint Declarations

4. Auxiliary Validation / Inference

Point Cloud Generator over [-1,1]



MODULUS: ANATOMY OF A PROJECT
What is Modulus?

▪ 1. Function Declarations

2. Domain Geometry

3. Loss / Constraint Declarations

4. Auxiliary Validation / Inference

# NN declarations

net = instantiate_arch(

input_keys=[Key("x")],

output_keys=[Key("u")],

cfg=cfg.arch.fully_connected,

)

# Symbolic Function Declarations

x = Symbol('x’)

# writing directly

eq = Function("u")(x).diff(x).diff(x).diff(x)

# using PDE library

diff = Diffusion(T="v", D=1.0, Q=-1, dim=1, time=False)

# Aggregate all function declarations in nodes list (required)    

# used below in Constraint Declarations

nodes = diff.make_nodes()

nodes += [net.make_node(name=f"diff_net0", jit=cfg.jit) ]



MODULUS: ANATOMY OF A PROJECT
What is Modulus?

Step 2. Domain Definition: Geometry

▪ Modulus provides Constructive Solid Geometry tools to 
describe the geometry by hand

▪ Modulus can import STL files for complex 3D 
geometries (e.g., aneurysm example)

▪ The geometry objects can sample both interior and 
boundaries (1-D less than interior) to generate the physics-
informed point cloud for training or inference

1. Function Declarations

2. Domain Geometry

3. Loss / Constraint Declarations

4. Auxiliary Validation / Inference

from modulus.geometry.csg.csg_2d import Rectangle

from modulus.geometry.csg.csg_1d import Line1D

from modulus.geometry.csg.csg_3d import Box

# STL geometry

from modulus.geometry.tessellation.tessellation import Tessellation

# writing directly

# read stl files to make geometry

point_path = to_absolute_path("./stl_files")

inlet_mesh = Tessellation.from_stl(

point_path + "/aneurysm_inlet.stl", airtight=False

)

outlet_mesh = Tessellation.from_stl(

point_path + "/aneurysm_outlet.stl", airtight=False

)

https://docs.nvidia.com/deeplearning/modulus/user_guide/intermediate/adding_stl_files.html


MODULUS: ANATOMY OF A PROJECT
What is Modulus?

Step 3. Build the Objective Function to Minimize

▪ The final objective function is created by adding 
constraints to the problem domain; there are many 
types

▪ PointwiseBoundaryConstraint

▪ PointwiseInteriorConstraint

▪ PointwiseConstraint.from_numpy – field data

▪ IntegralConstraint

▪ Etc.

▪ Each pointwise constraint requires:

▪ The function declarations from Step 1

▪ The geometry object to generate the point cloud

▪ The name of the equation from Step 1 and its required 
value(s) (e.g., diffusion_u)

▪ Optionally, the type of pointwise aggregation (L2 norm 
by default, but Lp for any p available)

▪ Modulus sums all loss functions by default, but that can 
be modified

1. Function Declarations

2. Domain Geometry

3. Loss / Constraint Declarations

4. Auxiliary Validation / Inference

# make domain

domain = Domain()

# define data constraints -- at least one type needed

a, b = 1, 2

tt = np.array([-1,-1, 1, 1])

yy = np.array([a, a, b, b])

# supervised = PointwiseConstraint.from_numpy(

nodes=nodes,

invar={"x": tt.reshape(-1,1)}, outvar={"u": yy.reshape(-1,1)},

batch_size=4

)

domain.add_constraint(supervised, "supervised")

# interior (Physics) cinstraint

interior = PointwiseInteriorConstraint(

nodes=nodes, geometry=line,

outvar={"diffusion_u": 0},

batch_size=cfg.batch_size.interior,

bounds={x: (-1.0,1.0)},

)

domain.add_constraint(interior, "interior")    



MODULUS: ANATOMY OF A PROJECT
What is Modulus?

▪ 1. Function Declarations

2. Domain Geometry

3. Loss / Constraint Declarations

4. Auxiliary Validation / Inference

xx = np.arange(-1,1, 1/100)

in_vars = {"x": xx.reshape(-1,1)}

inferencer = PointwiseInferencer(

in_vars,

[‘g’, ‘g__x’],

nodes,

batch_size=256,

plotter=Plotter(), # Plot results in Tensorboard

)

domain.add_inferencer(inferencer)



OMNIVERSE – TOOL FOR BUILDING METAVERSE APPLICATIONS
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