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Abstract
This lecture introduces a basic theory for stochastic gravitational waves (GWs). Pulsar timing arrays

1 Gravitational Waves

Let us consider gravitational waves (GWs) in the transverse-traceless (TT) gauge with a globally inertial coordinate system
{t,Z} as

> d . P(t.2:
hap (t, &) = / % / A%k hap (w, k) € P (1TR) (1)

where w is the frequency, k is the unit spatial vector for the propagation, and P is the phase, a function of spacetime with
parameters (w, k), given by

P(t,Tiw,k) =w(-t+k-2). (2)
The wave vector for GWs is defined by
k*=V*P =w(n* + k), (3)

where n® = —g® (dt), = (0/0t)". The TT gauge condition gives

hap (w, k)0’ = 0, (4)
hap (w, K) K* = 0, (5)
he, (w, k) = 0. (6)
Because h is real, we have
hap (—w, k) = %y (w, K) . (7)

When we introduce two parameters (6, ¢) for k as
Kk (0, ¢) = sin 0 cos ¢p3* + sin @ sin ¢pj® + cos H2°, (8)

where {#,7, 2} is the orthonormal basis in a Cartesian coordinate system, the integradtion for d?x becomes

/d%:/:ﬂdqs/oﬂde sin9:/02ﬂd¢/_11d(cos<9) (9)

2 Polarization

Let us consider a vector space S for symmetric tracelss rank (0,2) tensors orthogonal to k. The GW amplitude b (w, k)
belongs to S. We choose a basis {e4 : A =+, x} for S as

1

e;rb = ﬁ (UqUp — Vap) (10)
1
er, = E (UaqVp + Vatp) . (11)

where {u,v,x} is a right-handed orthonormal basis that is the rotation of the orthonormal basis {Z, 7, 2} in the Cartesian
coordinate system by the Euler angle (6, ¢, ) as

u® costy siny 0| [cosf 0 —sind cos¢p sing 0| |z
v*| = |—siny cosy 0O 0 1 0 —sing cos¢ O |g° (12)
K 0 0 1| [sin@ 0 cosf 0 0 I



Note that the 1/ V2 factors in eqs. and ensure the normalization as

Capeeng” g™ = 647, (13)
Then, hqp is decomposed into

hap = iL+er + ﬁxe:b

= iLA efba (14>

where h, are components in the basis and we intoduced the Einstein summation convetion for the index A.
Let us consider the projection operator from general vectors to vectors orthogonal to n and x defined by

% =60% +nnp — KKy. (15)
Then, the projection operator from general rank (0, 2) tensors to S is given by
1
A% =P PYy — §P“chd. (16)
Note that

1 1 1
Aabab _ 5}Daa Pbb + §Pab Pba o 5Pabpab

241—1
=2. (17)

The dual basis {eA A=+, x} uniquely exists such that
eqes = 0"p. (18)
Since the basis is complete, we obtain

ey = A, (19)

3 Stochastic Gravitational Waves

We assume that hgp of stochastic gravitational waves (SGWs) is Gaussian such that its statistical status is fully described
by the expectation value and the correlations. The expectaion value is given as

<hab (ta f)) =0, (20)

which implies

<7zab (w,/@)> = 0. (21)

h

We also assume that h of SGWs is temporally stationary and spatiallly homogeneous. Then, its correlations R},

by

4 are given

RZbcd (T’ g) = <hab (t7 f) hcd (t + 7, T+ :‘7)) : (22)
Note that it only depends on the time difference 7 and the position difference 4. The correlation has properties as

Rlyeq = Rigaps (23)
Ripeq (=7, =7) = (hap (6.7) hea (t = 7.7 = §))
= (hap (' + 7,7 + ) hea (t', 7))
= Rgdab (7, 9)
= RZbcd (1,9) - (24)

The wave equation for R" is given by

O Rltvea = (hav (6, %) O gy hea (t+ 7,2+ §))
=0, (25)



where [J(; 7 is the D’Alembertian operator with partial derivatives with respect to (7,%). Then, R" has wave solution as

* dw -
abcd / /dzﬁsabcd ) ol T+K.y)7 (26)

where S”, ., (w, x) is the power spectral density having properties

Slhea = Shaaps (27)
St}LLbcd (_w’ "{) = Sgbcd (w7 K) ) (28)
Sgbcd (_wv ‘%) = Sg;cd (wv ’Q) . (29)

The first equation is derived by eq. , the second is deduced from eq. ., and the third comes from that R" is real.
Therefore, we conclude that S” is also real From eq. ., we obtain

/ dw /dQFLSade ) iw(—T+KT)
- / /d2 / = /d2 "L hap (W K') heg (w, I{)> i (—tHR-T) piw(—t=T+r-(T+7))
< dw ~ - (o } PN .
_ ww 2 bl 2,/ * rot z(w 7w)t z(wnfw K )z w(—T+kK7)
/OOQW/dn[/OO 27T/dfc ab(w,n)hcd(w,/i)>e e e . (30)
Note that the expression inside the square bracket has nothign to do with ¢ and Z. Therefore, we obtain
(i (@, ) hea (1)) = 270 (& = ) 8% (K = 1) Sthq (w, ) (31)
For k (0, ¢), the factor 62 (k' — k) is explictly written as
62 (k' — k) = 8 (cos 0’ — cos0) 5 (¢ — ). (32)
Assuming no preference to SGW polarization, we get
1
Sz}zlbcd (w> ’%) = §Sh (w> ’%) Agbed (H) ) (33)
where S}, is a scalar function of (w, k). In addition, we assume the isotropy of SGW. Then,
S () = 151 () (34
h \W,R) = An h W),
where Sy, (w) is the scalar function of w. The factors 1/2 in eq. and 1/47 in eq. are chosen such that

<hab (tv J_f) hab (t7 f)> - abcd (0 0) e bd

/ 7 /dg’%sgbcd (w7l€)gacgbd

dw 1
_ / & / B2k =S (w, K) Aaped () 96"
oo 27 2

< d

:[m%/d2n5h(w,n)

[T dw 5 1

[ s, (35)
oo 2T

Therefore, S;, (w) becomes the power spectral density for <habhab>. In these assumptions, we have

(Bt (0,) P (&1, ) ) = 278 (& — ) 207 (5 = ) 3 Aatea () S (). (36)



4 Energy density of GW background

The energy density of GWB is given by

1
Pew = 55— <athab8thab>
i
~ 32r

zw)<hab(w k) hab (o )>

dw’ /d2/ —iw)
dw' /d2 " (iw) Zw)<hab(w k)R (o H)>
/d2

[.5
~ 32r /d2 /
:32% 7/012,.;/ ﬁww’Qﬂ'éw—w)ﬁ(SQ(H—/ﬁ)Sh( )
- 3;7r . %”2‘%( @)
é df (2m ) ST ()
= /0 df (2nf)? Sgmesided (f) . (37)

Let us define {24, as the log frequency density for the cosmological parameter of GWB:

Pev _ [ g1
e /0‘“ J Qo (f)
1

T 12H?

o [ P ) (39)

| ey sy

™

~3HZ J,

where p. = 3HZ /8 is the critical density. Therfore, Qg is related to Spme~=ided a5

ng (f) H2 fBSone sided (f) ) (39)

5 Detector Output Correlation
Detector output is given by
s(t)=h(t)+n(t). (40)
GW signal h is given by
h(t) = D®ha (t,70) (41)

where D? is the detector tensor and Z is the position of detector. We assume that the noise n is Gaussian and stationary
as

(n (1)) =0 (42)

mt)n(t+7) =R, (1) = /_00 ;i—;_] S, (w) e T, (43)

where R,, (1) is the auto-correlation depends only on the time difference 7 and S, (w) is the noise spectral density.
Let us define a correlation measurement from two detector outputs as

T/2 T/2
/ dt / dt' sy (t)s2 ()Y Q' —t), (44)
T/2 T/2

where @ is the real filter function. We assume the noises of each detector are not correlated as

(n1 (t)na (t')) = (n1 (1)) (na (1))
0. (45)

>~



Then, we obtain

(hy () na (1)) + (na (£) ha () + (na (8) 2 ()
(ha (1)) (n2 (¢)) + (na (£)) (ha (1)) + (n1 (1)) (n2 ()

- -

T/2 T/2
:/ dt/ dt’ (s1(t)s2 (1)) Q (' —1)

T/2 T/2

= / dt / dt' DD (b (t, 1) heq (t',22)) Q (t' — 1)
T/2 T/2

= / dt / dt' DY*DSARN, (' —t, 20 — 1) Q (' —t)

T/2 T/2 oo ) , oL S ro. il
= / dt dt’' D{* D" / o / A2 Shy o (w, 1) (= (1 =)+ @2 =30)) / W5 () e (1)
—T/2 —T/2 oo 2m oo 2T
* dw 1 1 . oL © du!
— nabped 2 - w(k (Z2—T1))
Dl D2 [m o /d K 47rSh (w) 2Aabcd (H) e /

o Q* (W) 0r (W —w) oy (W —w)

— 00

B /m ;Z%Sh (W) T (w) /°° %Q* (W) o7 (' = w) or (' — w)

—00

~T / T dw Sy (W) T (w) Q* (w) (47)

oo 2T

where 07 is defined by

T2
or (w) = /T/2 dt e™*

= T'sinc (wT/2), (48)
and T (w) is the overlap reduction function given by

- 1 1 iw(k-(To—F
Fw) = / d%iAabcd (k) D D§lei( (F2=71) (49)



The noise N for the measurement is defined by
N? = Var ([Y],_,)
= <[Y2]h:0> - <[Y]h:o>2
T/2 T/2 2
== ([ [ at om0 )

—T/2 —T/2

T/2 T/2
=([Y?],_,) - dt dt’ (
—T/2 —T/2

2
)) (n2 () Q (' — t))

T/2 T/2 /2 /2
= / dt / dt’ / dt” / dt"” (ny () na () ng (") ma ("N Q' — 1) Q ("

.5

oo dw///

o0

X S{l (w) efiw(t”ft)sg (UJ/) efzw'( t" t' Q(wll) —iw’ (t' t)Q( /I/) efzw'”(t”'ft”)

dw//

T/2 T/2 T/2 T/2 d’
= / dt / dt’ / dt” / dtr"” / / — /
—T/2 —T/2 —T/2 T/2 27 oo 2T

(W)@ )
_/OO 70‘)/00 do.)//oo dw” /OO dUJ/H
)2 o2 ) 2m ) 2w

Then, the signal to noise ratio (SNR) is given by
S VT %xhwﬁwmww
_ 2
¢f 2257 (@) 5§ (@) |Q ()|

oo 2w

(saT'/8185.Q)
T—
(@.0)
where the inner product is defined by

dUJ n mn *
a8 = [" S @S ) AW B ).
The SNR is maximized when we choose the filter () as

- ST
© X Spsy

N \F\// o ST (w i ;(w) ’f(w)‘2

6 Detection of Gravitational Waves by Light

In this case,

6.1 Maxwell’s Equations

Maxwell equation for 4-potential A is given by

VOV [, Ay = Amd,,

efzw(t t//)e /(t/// ) (t/ t e

L

oo dw///

o0

///( "_

/N)

dt” (ny (t) na (1)) (na () 2 (")) Q (' = 1) Q ("

///
_/T/2 dt/T/2 dt’ /T/2 dt”/ dt”’/ —w/oo d—w//oo du”
—T/2 —T/2 —T/2 T/2 2 2T

,w/)

_ t//)

_ t//)

(53)

(54)

(55)

(56)



where J is the electromagnetic 4-current and we introduce Gaussian unit, eg = 1/47 and pg = 4w. Using Lorenz gauge,
V®A, =0, (58)
we get
VOVyA, = R® Ay — 47, (59)

Exercise: As you know, Maxwell’s equations consist of 4 equations. However, with 4-potential A, we only need Gauss’s
law and Ampeére’s law as in eq. . Why?
Exercise: Prove that the conservation of electric charge, V*J, = 0.

6.2 Geometrical Optics

Let us consider a local Lorentz frame {¢,Z}. In the frame, £ is defined as a typical length over which the waves vary and
R is defined as a typical components of the Riemann curvature tensor. When the frequency of electromagnetic waves w is
much larger than 1/L where L = min (£, R), geometrical optics is valid. Let us consider electromagnetic waves given by

A, (6, %) = 2R [{fla +w 'B,+0 (w_z)} eiWQ(t’i)} , (60)
such that [* = V?q is future-directed. In vacuum, eq. becomes the wave equation for A as
VPVyA, =0 (61)
Through,
VA, = 2R [{iwib (Aa + wiléa) + VbA + O ( )} zwq:|
P [{wle +ilyBy + VAo + O (w 1)} Wf} (62)
vid, =2 [{iw (I-A) +i (I- B) + VA, +0 (w™) fe1] | (63)
VoVpA, = 2R [{z‘wic (iwl},[xa ilyB, + vbjxa) +iwV, (z},[la> ) (1)} eM]
— 2R [{—MQZCZ,,A@ fw (—l},l}éa iV Ag + iV (z},fia)) +0 (1)} ei“q} , (64)
VOV, A, = 2R H—w2 (Z- i) Ay +w (— (Z- i) Ba + 2il"VyAq + z’[lavbib) +0 (1)} eW} : (65)
we get
0=1-1, (66)
in the leading-order of w and
0=10-4, (67)
0=20"V,A, + A V,l" (68)
in the next-to-leading-order. Rewriting results in @ = wq and | = wi , we obtain the evolution equations along [ as
V@ =1-1
=0, (69)
PVl = g*I'V,V.Q
_ gaclbvcvbQ
1 ac
- 59 Vc (l l)
=0, (70)
in the leading-order and
- 1 -
I’V A, = —§Aavbzb (71)
1-A=0 (72)
in the next-to-leading-order. Introducing the real amplitude A = v/ A - A* and polarization vector f, = A, /A, we get
0= Vb (Ale) ) (73)
0=1"Vyfa, (74)
0=1-1. (75)

The first equation is conservation of the number of light rays, the second equation is the parallel transport of polarization,
and the third equation is the transverse condition of polarization.



6.3 Perturbation of Rays

We introduce the Minkowski background spacetime and monochromatic plane electromagnetic wave given by

Ag =2 [A,e]
where A and I, = V,Q are constant over spacetime. We impose Lorenz gauge and radiation gauge as

0=V?*A4,,
0O=u-A,

implies

o o
Il
N
-~

Meanwhile, GWs are in the TT gauge given by

for all k € NV.
Perturbed phase is given by

Q(e)=Q+eS+O(62).
The linear perturbation of [ becomes

L1 =L, (9"°V,Q)
= —h®[, + V°8S.

Then, eq. provides
0= (=h®l + V*S) o +1°V,S,

implies

a 1 ajb

19V oS = —hgpl®l°.

2
The general solution of S is decomposed into the particular solution and the homogeneous solution as
S =8P+ 5h

The particular solution can be solved using

Plugging it into eq. (87)), we get

SP = fiz(k %) Rap (k) 191°.
The homogeneous solution have to be satisfied
1°V,S" =0,
implies S* (t,2,9,2) = X (¢ = —t + 2,9, 2).
Let us consider the frequency as
w=—-u'VyQ.

Its perturbed value becomes

() =w+ea+0 (),



where

a=—v%, —u'V,S
= —u"V,S.

(94)

Note that « is gauge-invariant because w is constant on My. We give boundary condition at the 3-dimensional timelike

plane P that is the congruence of emitters as

[o] 5

[—u"VaSP —u'V, S,
[ dSN (k) ik ( 1zhb01br> PGR) 19,X (q

2 k-1
/d3/\/

t+fE,y,Z):| )
P

9

pla1beiws (-t (yi+22) | g X (¢ =—t,y, Z)]
P

implies

h lalb iwg (q+kK- (yy+ZZ))

-1
ho » (k) jabeiwe(atr-(yi+22)) | (y,2)
i o (k) [01bgiwe (“tHAT+R-(F-(N-E)N) | (y,2) .
We conclude that
§= i /N PN sy ()11 (1= P60 ) P9 10y, ),
where

D(t,Z k1) =wg (1 —K-X)(A-Z).

Before arrival of GWs, we assume no perturbation as S (t < tp,0 < < L,y,2) = C (y, z) = 0. Therefore,
_ _72/ d3N-7hablalb ( Gk) _ ei(P-i—D)(;k,l)) ,
where

(P+D)(t,# k1) =Pt —X-Z,5— A\ %):k).

Perturbed amplitude is given by

The evolution of the amplitude, eq. , provides
b R _ e Nb__EN _pbe b crvb
VB, — C° Al = Aa Vb( h ZC+VS)+ZCCb
’V,B, = —fA oVoVPS + = (v he, + Vph¢, — Vehay) AL,

It gives

k
bk (= )P0 4 (ko + ke, — Ky ) Aclb] (PR

B, = / &N {2Aahbclblck (u— N) et PERD (kahcb + kyh®, — k%ab> Aclb] PR 4 g,
v :

'lflaﬁbclblc{k—(k-f))\}{k—(kf))\}ei( D4 (kh + kRS, — kR ab)Az} P(:k)

(102)

(103)

(104)

(105)

(106)

(107)

(108)

(109)

(110)

(111)



=Y, (g = —t+ z,y, 2) is quantity satisfying 1’V,C, = 0. The Lorenz gauge, eq. , provides
—hPl, + VOS) A, + 1 B (112)

(
_ |:hablb I 2/ d‘SN hbc (k) 11 {kaeiP(;k) _ (ka _ (k ) [) )\a) 6i(P+D)(;k,l)}] i,

where C, (t,2,y, z

- - L A ) -
BN hay | A® — 19 ) 1P 4. 11
+/N N b( 20k 1) > e +1-C (113)
_ ! / >N Mhab (k) 1910 P+PIGRD 1. ¢ (114)
2 N k-l
- 1 CA- , .
_ 5/ BN k l hgplbe!PHDIGRD 4 o (g=—t+mzy,2)l, (115)
The radiation gauge provides
0= (B + iSA) " (116)
1
5/ dgN—habAalb PER) _ C (g = —t+2,y,2) (117)
C = 1/ BN e peiPeh (118)
2 Iy k-1

As a result,

~ 1 1~ ~ ~ ) ~ ~ ~ ~ .
B, = 3 ZA bjcy. . _ i(P+D)(;k,l) c ¢ _ 1c A b iP(;k)
o /N—dNZ(k~l) {2 o’k - (u—A)e —l—(kahb—!—kbha k hab) Ae

1 k-A- ,
- d3 7]710, k lb i(P+D)(;k,l)
1 U~ .
- | & —h (ALIEPER],
5 /N N e e
Ly e N7 b\ i(P+D)GRD)
(k 5 |13 el Th - (u )\)+(k-A)habl e ik,

- / W
kah® 4 kph®, — kShap ) A’ + 1o (k - w) hpe A1 L P GF) (119)
+{( ) b

7 Pulsar Timing Array

Pulsar Timing:

>,
N~

h(t)= T (120)
dwe
_ dw (121)
w
% dwg 1 hap (We, Kig) KEKL 1 ipira. P (b
|2 Wy 1 Nap \Wg, Kg) Ke e ( iP(t,Foiwg,ke) _ oiP (t,xo,wg,m) 192
/ ”g/m%z 1—hg e\ € (122)
a,.b
/ Pry / dwg 1 hap (g, Kg) KK i1,z iie) (1 _ ewgmwgwe)) (123)
2r 21— kg Ke
where
P (t, & wg, k) = wg (=t + Ky - &) (124)
P’ (t,%;wg, kg) = P (t — L, T — Lke; wg, Kg) (125)
=wg (—t+ kg - T) +weL (1 — Kg - Ke) (126)
Correlation:
<h ( h t+ 7_ /d2:‘<§ /OO % - Re, 1:“62 1 _elel i 1P (t,Z0;wg,Kg) (1 _ eingl(l—ng-ne,l))
1 he ( & 21 21— kg - Ko
d
/d2 , / dw 1 /ie 2He2 6 (t+'r,j‘0;wé,né) (1 ezngg(l Iig Ke, 2))
277 21— m ‘ Ke,2
X <hab (We» Fig) Ped (wg, Iig)> (127)

10



	Gravitational Waves
	Polarization
	Stochastic Gravitational Waves
	Energy density of GW background
	Detector Output Correlation
	Detection of Gravitational Waves by Light
	Maxwell's Equations
	Geometrical Optics
	Perturbation of Rays

	Pulsar Timing Array

