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Gravity and general relativity

G +Agu = kT,

Local space time curvature Local energy, momentum stress

Mass of object
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Gravitational wave
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Gravitational wave detector

Gravitational wave Black hole Spacetime

Mirror _I £i3 Mirror
Ground scale Michelson interferometer

* 4 km vacuum tunnel arm
Over 1000 km interaction length
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Michelson interferometer
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Interference
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Interference

YONSEI UNIVERSITY




Gravitational wave detector
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Light(Electromagnetic wave)

Wavelength
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Light(Electromagnetic wave)
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Interference

L \yI=000my2=000m, yi+y2=000m T=1008,t=0.00s,
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Michelson interferometer
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Interference
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Light(Electromagnetic wave)

Wavelength
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Interference signal

E = Eycos(kx — wt +

@ xdl —d2 (in some condition)

=— 1 :wavelength
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Interference signal

F = EoCOS(E’C —wt+¢@) P d1l — d2 (in some condition)
k = an A 0.1um~10um
wavelength
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Interference signal
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Gravitational wave detector

Gravitational wave Black hole Spacetime

Mirror ir Mirror
Ground scale Michelson interferometer

4 km vacuum tunnel arm
Over 1000 km interaction length

e Build most sensitive system
| g using most simple arrangement
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Gravitational wave

+ polarization

.. '.
“ ¢
® L
? o o o ¢

MPA Lectures on Gravitational Waves in

Cosmology
Azadeh Maleknejad
Max-Planck-Institute for Astrophysics

YONSEI UNIVERSITY




Gravitational wave
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Compact binary system

xy—plane
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window.
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Gravitational wave quadrupole radiation
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Effect of gravitational wave

Gravitational wave
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Effect of gravitational wave

Gravitational wave
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Gravitational wave and GW detector

Gravitational VZ’

light storage arm

test mass

light storage arm

test mass test mass

test mass

beam
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https://www.ligo.caltech.edu/
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Gravitational wave and G'*/ detector
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Gravitational wave and GW detector
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Gravitational wave and GW detector

Gravitational VZ’

light storage arm

/ test mass
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Free fall condition

to incident gravitational wave
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Strain sensitivity

Minimum
sensitivity
AL
— ~ 10721
B L
Compressing by GW
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Strain due to gravitational wave

Size of atom = 1 x 1070 m

AL
— ~ 10741
L

Detect existence of a single atom
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Strain due to gravitational wave

Detect existence of a single atom
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Sensitivity of michelson interferometer
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arXiv:1203.1706
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Sensitivity of michelson interferometer
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1000 km interferometer

~1100km
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LIGO interferometer
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LIGO interferometer
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Fabry-perot cavity

)/ r1=0.99 r2=1.00

Coherent Laser Beam splitter
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Fabry-perot cavity

y r1=0.99 r2=1.00

Coherent Laser g, splitter FP-Cavity
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Fabry-perot cavity

)/ r1=0.99 r2=1.00

Coherent Laser g, splitter FP-Cavity
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Fabry-perot cavity
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Coherent Laser g, splitter FP-Cavity
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Fabry-perot cavity

)/ r1=0.99 r2=1.00
=/ [l

Coherent Laser g, splitter FP-Cavity
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Fabry-perot cavity

=/

Coherent Laser g, splitter FP-Cavity
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Fabry-perot cavity

=/

Coherent Laser g, splitter FP-Cavity

Number of round trip > 250
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Fabry-perot cavity

=/

Coherent Laser g, splitter FP-Cavity

Number of round trip > 250
4 km x 250 ~ 1000 km
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LIGO interferometer
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1000 km interferometer

~1100km

ki 20| = 20|
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LIGO interferometer
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First detection of gravitational wave
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First detection of gravitational wave
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LIGO interferometer
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4 km interferometer
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4 km interferometer
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4 km interferometer
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LIGO interferometer
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First detection of gravitational wave

Hanford, Washington (H1) Livingston, Louisiana (L1)
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Parameter estimation

Cowmpact Biwarg Coalescences (CBCs) parameters

@ For CBCs, the astrophysical contribution is a waveform that depends
on 17 parameters

/'\GW energy
ZB

Component masses, Component spins

Sky-location, Distance, Inclination, Polarization,
Reference phase, Time at coalescence

Shu-Wei Yeh (NTHU
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Parameter estimation

Cowmpact Biwarg Coalescences (CBCs) parameters

@ For CBCs, the astrophysical contribution is a waveform that depends
on 17 parameters B | a C k H O | e

P « High mass
/Q « High density(point source)
 No hair

c: Component masses, Component spins
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Inspiral-Merger-Ringdown

Inspiral Merger Ringdown
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First detection of gravitational wave

Hanford, Washington (H1) Livingston, Louisiana (L1)
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First detection of gravitational wave

Gravitational Waves Detected 100 Years After Einstein's

Prediction
News Release * February 11, 2016

Visit The Detection Portal
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First detection of gravitational wave

G ra V !ta:tl 0 n a I . 7 The NobelﬂPriize in F;h);sic; 2617 Press Releaser
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News Release * February 11,

Visit The Detec Gravitational waves finally captured

“for decisive contributions to the LIGO detector and the observation of gravitational waves™
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First detection of gravitational wave
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First detection of gravitational wave

— o LA e -
The Nobel Prize in Physics 2017

Gravitational
Prediction

News Release * February 11 “for decisive contribu*

@ heaqlth Life, ButBetter Fitness Food Sleep Mindfulness Relationships

Nobel Prize in Physics goes to ‘black hole
telescope’ trio

Frequency (Hz)

0.30 0.35 0.40 0.45 0.30 0.35 0.40 0,45
Time (s) Time (s)

YONSEI UNIVERSITY




LVK Observation plan
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BNS range

Binary-neutron-star range

Common benchmark of sensitivity

Made up of two 1.4 solar mass neutron stars

Signal-to-noise ratio of 8

https://svs.gsfc.nasa.gov/10543

Maximum distance at which an event can be detected

=30} o Est 2025 YONSEI UNIVERSITY
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Neutron star

Why binary neutron star?
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Parameter estimation

Cowmpact Biwarg Coalescences (CBCs) parameters

@ For CBCs, the astrophysical contribution is a waveform that depends
on 17 parameters

2N Black Hole

« High mass
« High density(point source)
 No hair

c: Component masses, Component spins

Sky-location, Distance, Inclination, Polarization,
Reference phase, Time at coalescence

Shu-Wei Yeh (NTHU
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Event Horizon
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Test of General Relativity
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Hulse-Taylor Pulsar

_I|IIIIIIIIIIIIII[IIIIIIIII

I[llllllllllllll]IIII|l[lJ|IIII|lIlII

:
IIIIIlII|IIII|IIII]IIII||||||IIII|I||

Cumulative shift in periastron time (s)

_40_IllIII|IIIIIIIII|IIlIIIIII|IIIl
1975 1980 1985 1990 1995 2000 2005

Year

YONSEI UNIVERSITY




Today — 14 hillion years
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Multi-messenger astronomy with gravitational

Binary Neutron Star Merger

/ L

= X-rays/Gamma-rays
Gravitational Waves

Neutrinds
David Reitzd.IGO-G2100002-v1

Visible/Infrared Light
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GW alert procedure

LSC), [l@//NIxe®,

GW candidates Sky Localization EM facilities

LIGO-H LIGO-L
| F o A bsn—

> 44
,‘\ £ N

Event validation k

> afew min > 30 min
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Sky localization

+15:00

+60:00

+45:00

GW151012
GW170818-HLV

% GW170608

12:00 08:00 06:00 04:00

15:00

GW170817-HLV " GW170809-HLY

GW170729 4% | o
AL ' | 30:00 GW170814-HLV

45:00

oo 4 GW150914

75:00)  Simmmm——
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Localizing Gravitational-wave Events

By measuring the arrival time of
the gravitational-wave at each
observatory, it’s possible to
identify its location on the sky

Yokohama GRB 201

Marci Branche

A single GW observatory is mostly insensitive to the sky location;

T i we want two and preferably three or more observatories SEI UNIVERSITY
LIGO, Hanford, WA i




Sky localization
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Gravitational wave observatories

=
« I4GO Hanford
[ | ’ L H

ﬁ' _LIGO Livingston

Operational
Planned
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Gravitational Wave Observatories
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First multi-messenger detection | gw170817

Binary neutron star merger

A LIGO / Virgo gravitational wave detection with
associated electromagnetic events observed by over
70 observatories.

Distance
& 130 million light years
@ Discovered
17 August 2017
™\ Type
=@ Neutron star merger

12:41:04 UTC
Q A gravitational wave from a
‘ binary neutron star merger is detected.

Q’ gravitational wave signal

Two neutron stars, each the size
of a city but with at least the
mass of the sun, collided with

Binary neutron star merger

gamma ray burst

each other. A short gamma ray burst is an + 2 seconds
intense beam of gamma ray A gamma ray burst
radiation which is produced is detected.

. . . just after the merger. RF\:FS'
Gamma ray burst detection with Fermi-detector

GW170817 allows us to
measure the expansion rate of
the universe directly using
gravitational waves for the first
time.

+10 hours 52 minutes
A new bright source of optical

Kilonova detection using telescope

K

o
o
3

Detecting gravitational waves
from a neutron star merger
allows us to find out more about
the structure of these unusual
objects.

This multimessenger event
provides confirmation that
neutron star mergers can
produce short gamma ray bursts.

The observation of a kilonova
allowed us to show that neutron
star mergers could be
responsible for the production of
most of the heavy elements, like
gold, in the universe.

Observing both electromagnetic
and gravitational waves from the
event provides compelling
evidence that gravitational
waves travel at the same speed
as light.

kilonova

Decaying neutron-rich
material creates a glowing
kilonova, producing heavy
metals like gold and
platinum.

radio remnant

As material moves away from
the merger it produces a
shockwave in the interstellar
medium - the tenuous material
between stars. This produces
emission which can last for
years.

light is detected in a galaxy
called NGC 4993, in the
constellation of Hydra.

+11 hours 36 minutes
Infrared emission observed.
+15 hours

Bright ultraviolet emission
detected.

+9 days

X-ray emission detected.

+16 days

Radio emission
' detected.

YONSEI UNIVERSITY




First multi-messenger detecti| GW170817

Dinarms nainitran cfar marcaar

' ) Distance
Q 12:41:04 UTC B SOl lihyesre

A gravitational wave from a :
4 : Discovered
binary neutron star merger is deE 17 August 2017

& o
gravitational wave signal Neutron star merger

. Two neutron stars, each the size
Binary neutron star merger of a ity but with a eastthe
mass of the sun, collided with
each other.

+ 2 seconds
A gamma ray burst

is detected.
just after the merger.

-

Gamma ray burst detection with Fermi-detecto

GW170817 allows us to 'T;U
measure the expansion rate of

the universe directly using

gravitational waves for the first

time.

A new bright source of optical
light is detected in a galaxy
called NGC 4993, in the
constellation of Hydra.

Kilonova detection using telescope

Detecting gravitational waves kilonova
from a neutron star merger Decaying neutron-rich
allows us to find out more about material creates a glowing

the structure of these unusual kilonova, producing heavy
objects. metals like gold and +11 hours 36 minutes
platinum. Infrared emission observed.
Ej,'r This multimessenger event +15 hours
r provides confirmation that Bright ultraviolet emission
neutron star mergers can . detected.
J produce short gamma ray bursts. radio remnant +9d
Iy As material moves away from ays

the merger it produces a X-ray emission detected.

shockwave in the interstellar

The observation of a kilonova 3 :
allowed s to show that neutron medium - the tenuous material

A star mergers could be between stars. This produces
u responsible for the production of emission which can last for

most of the heavy elements, like years.
gold, in the universe.

+16 days

Radio emission
' detected.

Observing both electromagnetic
and gravitational waves from the
event provides compelling
evidence that gravitational
waves travel at the same speed
as light.




First multi-messenger detecti

Binary neutron star merger

Gamma ray burst detection with Fermi-dete

Kilonova detection using telescope

GW170817

Binary neutron star merger
A LIGO / Virgo gravitational wave detection with
associated electromagnetic events observed by over

70 observatories.

12:41(
A gravitat
binary net
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Detecting gravitational waves
from a neutron star merger
allows us to find out more about
the structure of these unusual
objects.

Ej,'r This multimessenger event
P provides confirmation that
neutron star mergers can
J produce short gamma ray bursts.
-

The observation of a kilonova
allowed us to show that neutron
star mergers could be
responsible for the production of
most of the heavy elements, like
gold, in the universe.

Observing both electromagnetic
and gravitational waves from the
event provides compelling
evidence that gravitational
waves travel at the same speed
as light.

A new bright source of optical
light is detected in a galaxy
called NGC 4993, in the
constellation of Hydra.

kilonova

Decaying neutron-rich
material creates a glowing
kilonova, producing heavy
metals like gold and
platinum.

+11 hours 36 minutes
Infrared emission observed.

+15 hours

Bright ultraviolet emission
detected.

+9 days

X-ray emission detected.

radio remnant

As material moves away from
the merger it produces a
shockwave in the interstellar
medium - the tenuous material
between stars. This produces
emission which can last for
years.

+16 days

Radio emission
' detected.




First multi-messenger detecti

Binary neutron star merger

Gamma ray burst detection with Fermi-dete

Kilonova detection using telescope

GW170817

Binary neutron star merger

A LIGO / Virgo gravitational wave detection with
associated electromagnetic events observed by over
70 observatories.

12:41:04 UTC
A gravitational wave from a
i binary neutron star merger is detected.

L 4

gravitational wave signal
Two neutron stars, each the size
of a city but with at least the
mass of the sun, collided with
each other.

GW170817 allows us to

measure the expansion rate of

the universe directly using
gravitational waves for the first
time.

Detecting gravitational waves
from a neutron star merger
allows us to find out more about
the structure of these unusual
objects.

Ej,'r This multimessenger event
P provides confirmation that
neutron star mergers can
J produce short gamma ray bursts
The observation of a kilonova 1EU tron-rich
allowed us to show that neutronsates g glowing
Au star mergers could be .
responsible for the production o roducmg heavy

most of the heavy elements, like o=
gold, in the universe.

Observing both electromagnetic
and gravitational waves from the
event provides compelling
evidence that gravitational
waves travel at the same speed
as light.

gamma ray burst
A short gamma ray burst is an
intense beam of gamma ray
radiation which is produced
just after the merger.

Distance
€ 130 million light years
% Discovered
17 August 2017
™ Type
@ Neutron star merger

+ 2 seconds
A gamma ray burst
is detected.

A new bright source of optical

light is detected in a galaxy

called NGC 4993, in the

constellation of Hydra.

+To oays’ ‘
Radio emission

' detected.
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Sky localization
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LIGO-VIRGO joint observation

DATA-TAKING PERIOD coitant e

# By Massimiliano Razzano [ August1,2017 & News, Press Releases

VIRGO joins LIGO for the “Observation Run 2" (02) data-taking period

Todayl Tuesday August 1st 2017]the VIRGO detector based in Europe has officially joined “Observation Run 2" (02) :
based TWih etectors.
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Localizing Gravitational-wave Events
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By measuring the arrival time of
the gravitational-wave at each
observatory, it’s possible to
identify its location on the sky

Yokohama GRB 201

Marci Branchesi

A single GW observatory is mostly insensitive to the sky location;

T i we want two and preferably three or more observatories SEI UNIVERSITY
LIGO, Hanford, WA i
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Polarization of gravitational wave

LIGO-Hanford

LIGO-Livingston VIRGO

L

YONSEI UNIVERSITY




Polarization of gravitational wave

LIGO-Hanford

LIGO-Livingston ' . VIRGO

YONSEI UNIVERSITY




Polarization of gravitational wave
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Polarization of gravitational wave
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LIGO, Hanford, WA

Localizing Gravitational-wave Events

b Blind spot of
ST W170817

ED 3

By measuring the arrival time of
the gravitational-wave at each
observatory, it’s possible to
identify its location on the sky

Yokohama GRB 201

Marci Branchesi

A single GW observatory is mostly insensitive to the sky location;
we want two and preferably three or more observatories SEI UNIVERSITY
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2. Sensitivity curve of gravitational

wave detector




LIGO sensitivity

Strain noise [1/Hz?]
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Appl. Phys. Lett. 122, 110502 (2023)
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Spectral density XA 19 languages v

Article Talk Read Edit View history Tools

————— -
From Wikipedia, the free encyclopedia

This article is about signal processing and relation of spectra to time-series. For further applications in the physical
sciences, see Spectrum (physical sciences).
"Spectral power density" redirects here; not to be confused with Spectral power.

inonsi

This article may be too technical for most readers to o
understand. Please help improve it to make it
’ understandable to non-experts, without removing the
~ technical details. (June 2024) (Learn how and when to remove

this message)

w o o -

oo
‘Wavelength (nanomeires)

In signal processing, the power spectrum Sz, ( f) of a continuous time signal z(t)

A o s ) ) The spectral density of a Bl
describes the distribution of power into frequency components f composing that fluorescent light as a function of
signal.l*) According to Fourier analysis, any physical signal can be decomposed optical wavelength shows peaks at

atomic transitions, indicated by the

into a number of discrete frequencies, or a spectrum of frequencies over a
numbered arrows.

continuous range. The statistical average of any sort of signal (including noise) as
analyzed in terms of its frequency content, is called its spectrum.

When the energy of the signal is concentrated around a finite time interval,
especially if its total energy is finite, one may compute the energy spectral
density. More commonly used is the power spectral density (PSD, or simply

power spectrum), which applies to signals existing over alltime, or over a time The voice waveform over time

period large enough (especially in relation to the duration of a measurement) that (left) has a broad audio power
spectrum (right).

it could as well have been over an infinite time interval. The PSD then refers to the



In signal processing, the energy of a signal z(t) is given by

Eé/wmmfﬁ

o

Assuming the total energy is finite (i.e. 2 (¢) is a square-integrable function) allows applying Parseval's theorem (or
Plancherel's theorem).[®! That is,

[ wPa= [ st

o0 o0

where
jm—/ 2 M (1) dt,

is the Fourier transform of z(t) at frequency f (in Hz).l”) The theorem also holds true in the discrete-time cases. Since the

integral on the left-hand side is the energy of the signal, the value of|Z( f) |2df can be interpreted as a density function
multiplied by an infinitesimally small frequency interval, describing the energy contained in the signal at frequency f in
the frequency interval f + df.

Therefore, the energy spectral density of z(t) is defined as:'®!

S..(f) 2 12(5)] (Eq.2)

The function Sy, (f) and the autocorrelation of z(¢) form a Fourier transform pair, a result also known as the Wiener-
Khinchin theorem (see also Periodogram).

As a physical example of how one might measure the energy spectral density of a signal, suppose V' (t) represents the
potential (in volts) of an electrical pulse propagating along a transmission line of impedance Z, and suppose the line is
terminated with a matched resistor (so that all of the pulse energy is delivered to the resistor and none is reflected back).
By Ohm's law, the power delivered to the resistor at time ¢ is equal to V(t)2 /Z, so the total energy is found by UNIVERSITY
integrating V(t)z/Z with respect to time over the duration of the pulse. To find the value of the energy spectral density




In signal processing, the energy of a signal z(t) is given by
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Assuming the total energy is finite (i.e. 2 (¢) is a square-integrable function) allows applying Parseval's theorem (or
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Khinchin theorem (see also Periodogram).
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integrating V(t)2 / Z with respect to time over the duration of the pulse. To find the value of the energy spectral density




Fourier transformation

 Fourier series
> basis
e Fourier transformation

« Application
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Fourier series
f(fl?) = f(w + T) Periodic function

b
/ |f|2 dx  Periodic function
a

1 to+T 2 .
In = = exP(— n;m)f(:c) dx, ty € R.
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Fourier series

&)= 3 goexp( 20"

n=-—~oo

f(x) = goexp(2mingx) + g,exp(2min, x)...
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Fourier series

e INTIT
=3 o exp(—T

Digital signal

f(x) = goexp(2mingx) + g,exp(2min, x)...

Threshold level
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Basis

(r.6,¢) :
o (X2 Orthogonal basis
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Fourier series

f(z) = i 9n exp(zn;m)-

n=—oo

Im A
i e'?=cos @ +isin @

sin @

Ofcoso 1 Re
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Fourier transform

/ f —2ma:§ dr

* We use a caret (M) to denote the Fourier transform.

Transform

= A .
= / f (6) 627I'Z£L‘£ dé. Inverse transform
—00
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Fourier transform

Fourier transformation with the angular frequency k

+00
flk) = J f(x)e*dx

1 [t .
Jflx) = —J flk)e™dk
2w ) _
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Fourier transform

Fourier transformation with the angular frequency k

+00
Flkh = J fx)e *dx

=

o

1 [t .
flx) = —J flk)e™dk
2w ) _
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Fourier transform

Signal s(7) Fourier Transform S(w)

R

cosine wave

ol

sinc function
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Fourier transform

Signal s(7) Fourier Transform S(w)
W I
cosine wave single frequency
sinc function
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Fourier transform

Signal s(7) Fourier Transform S(w)
R I
cosine wave single frequency

e [ ]

; : uniform band of
sinc function frequencies

S\

Gaussian

AN

double exponential
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Fourier transform

Signal s(7) Fourier Transform S(w)
R I
cosine wave single frequency

e [ ]

uniform band of

sinc function frequencies
Gaussian Gaussian
double exponential
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Fourier transform

Signal s(7) Fourier Transform S(w)
R R
cosine wave single frequency

e [ ]

uniform band of

sinc function frequencies
Gaussian Gaussian
double exponential Lorentzian
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Fourier expansion

+00
fl) = J e " dx

VR
N N

nN=——0oo
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Fourier expansion

" f(CU): Z aneinw

nN——0oo

= asin kx

Amplitude
o
o
o
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Time
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Fourier expansion

100 ] f(CU): Z aneina}

0.75 A

nN——0oo

0.50 A1

= = asin 2kx

0.00 A1
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Fourier expansion
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Fourier expansion

N f(CU) _ Z aneinw

1.0 1 n=——0oo

0.5

= asinkx + asin 2kx

0.0 -

Amplitude

=0.5 1
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Fourier transform

Signal s(7) Fourier Transform S(w)
R R
cosine wave single frequency

e [ ]

uniform band of

sinc function frequencies
Gaussian Gaussian
double exponential Lorentzian
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Fourier expansion

sawtooth wave
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Fourier expansion

semicircle
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Fourier expansion

triangle wave
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Fourier expansion
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Fourier expansion

1.00 A

0.75 A

0.50 A

0.25 A

0.00 -

Amplitude

—0.25 A

-0.50 A

—0.75 A

—1.00 A

YONSEI UNIVERSITY




Fourier expansion
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Fourier expansion
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Fourier expansion
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Application of Fourier transformation

flx) = Z p e’

nN——0oo

= asinkx + asin 2kx

Amplitude
o
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Application of Fourier transformation

flx) = Z p e’

nN——0oo

= asinkx + asin 2kx

Amplitude
o
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LIGO sensitivity
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Strain noise [1/Hz?]

10°

Frequency [Hz]  Appl. Phys. Lett. 122, 110502 (2023)
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Power spectral density
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Power spectral density

Power Spectral Density fn=200 Hz Q=10
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LIGO sensitivity
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Signal and noise

Signal : MEdt2 At 5= A

Noise : A| 222 X|2|¢t LIHX]
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Signal and Noise
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LIGO sensitivity

Strain noise [1/Hz?]
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Appl. Phys. Lett. 122, 110502 (2023)
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Side band figure
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Side band figure

We can illustrate the creation of sidebands with one trigonometric identity:
cos(A) - cos(B) = % cos(A + B) + % cos(A — B)
Adding cos(A) to both sides:
cos(A) - [1 + cos(B)| = % cos(A + B) + cos(A) + % cos(A — B)
Substituting (for instance) A = 1000+t and B = 100 -t, where t represents time:

cos(1000 #) - [1 + cos(100 )] = < cos(1100 ¢) + cos(1000 ¢) + = cos(900 t).
( 2 2
(:.arrit_e‘;r wave amplitud(-?lrnodulation kupper ;irdebandj carri(;;'r wave klower s?i’(rlebandj
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Side band figure
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LIGO sensitivity
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LIGO sensitivity

Strain noise [1/Hz?]
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LIGO sensitivity
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LIGO sensitivity
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Sensitivity during science run
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LIGO sensitivity
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LIGO sensitivity
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LIGO sensitivity
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Sensitivity curve of KAGRA
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Optical coating
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ACS Photonics 2021, 8, 3, 894-900
Publication Date:February 17, 2021
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Vacuum tunnel
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Test mass chamber
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KAGRA vacuum chamber
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Cryocooler of KAGRA
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KAGRA cryostat
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Vibration isolation
Type-A‘“m

=

Type-B
A

13.5m 31m
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Vibration isolation system with a compact damping system for power recycling mirrors of KAGRA
T.Akuts et al.,
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KAGRA interferometer
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PSL room of KAGRA
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KAGRA interferometer
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KAGRA interferometer
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Arm length stabilization of KAGRA

DARM: (Lx— Ly)/2 CLETMY
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Class. Quant. Grav. 37 (2020) 035004
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KACRA  KAGRA control network design
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Sensors in gravitational wave detector
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Sensors in KAGRA
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Sensors in gravitational wave detector

Required specification of tilt sensor
« Resolution : 0.1 yrad for cavity

1 urad for BS

« Drift: <10 yrad/day

« Measurement Range: >Tmrad.
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Folded mach-zehnder interferometer
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Physics Letters A, 382, 29, 1950-1955 (2018)
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Demonstration of 2-axis tilt sensor
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Interferometric tilt sensor

Input optics Controller
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Demonstration of 2-axis tilt sensor
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KAGRA O3 Commissioning
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