
Introduction to numerical analysis

LIM, Roktaek
Ulsan National Institute of Science and Technology

2024 Summer School on Numerical Relativity and Gravitational Waves

Part 1. Preliminaries

What is numerical analysis?

The study of algorithms for the problems of continuous mathematics.
(Lloyd N. Trefethen, SIAM News, 1992)

The field concerned with the design of computable algorithms for solving
mathematical problems, and with the analysis of their accuracy, efficiency, and
other aspects of performance.
(D. Arnold, 2024 Simons Conference on Localization of Waves)

1

What is numerical analysis?

The study of algorithms for the problems of continuous mathematics.
(Lloyd N. Trefethen, SIAM News, 1992)

The field concerned with the design of computable algorithms for solving
mathematical problems, and with the analysis of their accuracy, efficiency, and
other aspects of performance.
(D. Arnold, 2024 Simons Conference on Localization of Waves)

1

An example: Computation of a definite integral

Let a and b be two real numbers with a < b. A continuous function f : [a, b] → R is
given. How to compute

∫ b
a f(x) dx?

a x1 x2 x3 x4 b

f(x)

x

y

2

An example: Computation of a definite integral

Let a and b be two real numbers with a < b. A continuous function f : [a, b] → R is
given. How to compute

∫ b
a f(x) dx?

a x1 x2 x3 x4 b

f(x)

x

y

2

An example: Computation of a definite integral

Let a and b be two real numbers with a < b. A continuous function f : [a, b] → R is
given. How to compute

∫ b
a f(x) dx?∫ b

a
f(x) dx ≈ Q(f) =

N∑
j=1

hf (x̄j)

where h = (b− a)/N and x̄j = a+ (j − 0.5)h for j = 1, . . . , N .

The composite midpoint rule
h = (b− a)/N , x = a− 0.5h, and Q = 0.
for j = 1 to N do
x = x+ h

Q = Q+ hf(x)

end for
2

An example: Computation of a definite integral

Let a and b be two real numbers with a < b. A continuous function f : [a, b] → R is
given. How to compute

∫ b
a f(x) dx?∫ b

a
f(x) dx ≈ Q(f) =

N∑
j=1

hf (x̄j)

where h = (b− a)/N and x̄j = a+ (j − 0.5)h for j = 1, . . . , N .

The definite integral of a continuous function f(x) over the interval [a, b] is the limit of a
Riemann sum as the number of subdivisions approaches infinity,∫ b

a
f(x) dx = lim

N→∞

N∑
j=1

hf (x̄j) .

2

Computable algorithms

∫ b

a
f(x) dx ≈ Q(f) =

N∑
j=1

hf (x̄j) , (⋆)

∫ b

a
f(x) dx = lim

N→∞

N∑
j=1

hf (x̄j) . (†)

(⋆) can be implemented on computers, but (†) cannot.

3

Computable algorithms

∫ b

a
f(x) dx ≈ Q(f) =

N∑
j=1

hf (x̄j) , (⋆)

∫ b

a
f(x) dx = lim

N→∞

N∑
j=1

hf (x̄j) . (†)

(⋆) can be implemented on computers, but (†) cannot.

Computers can perform only a finite sequence of operations.

3

Can we exactly compute Q(f) on computers?

Q(f) =

N∑
j=1

hf (x̄j) (⋆)

where h = (b− a)/N and x̄j = a+ (j − 0.5)h for j = 1, . . . , N .

4

Can we exactly compute Q(f) on computers?

Q(f) =

N∑
j=1

hf (x̄j) (⋆)

where h = (b− a)/N and x̄j = a+ (j − 0.5)h for j = 1, . . . , N .

• Real numbers cannot be represented exactly on computer.
→ We discretize real numbers by introducing of floating numbers.

4

Machine epsilon

Machine epsilon test using Python
>>> import sys
>>> eps_m = sys.float_info.epsilon
>>> 1.0 + 0.5*eps_m
1.0
>>> 1.0 - 0.5*eps_m
0.9999999999999999
>>> (1.0 + 2/eps_m) - 2/eps_m
0.0

5

Floating-point representation

• A computer must store a finite amount of data.
• All numbers and arithmetic are done with some error.
• Sometime, this finite precision issue is minor.
• However, it is important to be concerned with the effect of finite precision

arithmetic on numerical algorithms.

6

Floating-point representation

The floating numbers can be represented as

x = (−1)s × 2e ×m.

This notation has three parts:

• a sign s,
• a mantissa in the interval [1, 2), m,
• an exponent e.

For example,

−4512 = (−1)1 ×
(
212 + 28 + 27 + 25

)
= (−1)1 × 212 ×

(
1 + 2−4 + 2−5 + 2−7

)
= (−1)1 × 212 × (1.0001101)2

7

Floating-point representation

Some references for the floating-point representation:

• Chap 2 and 9 in 754-2019 - IEEE Standard for Floating-Point Arithmetic
(https://ieeexplore.ieee.org/document/8766229),

• Chap 1 and 2 in Accuracy and stability of numerical algorithms
(https://epubs.siam.org/doi/book/10.1137/1.9780898718027),

• D. Goldberg, What every computer scientist should know about floating-point
arithmetic (https://doi.org/10.1145/103162.103163).

8

https://ieeexplore.ieee.org/document/8766229
https://epubs.siam.org/doi/book/10.1137/1.9780898718027
https://doi.org/10.1145/103162.103163

Errors

Absolute and relative errors
Let x̂ be an approximation to a real number x. Then its absolute error is given by

Eabs (x̂) = |x− x̂|

and its relative error is defined as

Erel (x̂) =
|x− x̂|
|x|

.

9

Roundoff error

Suppose that a positive real number x does not have an exact representation as a
floating point number:

x− = 1.b1b2 . . . bn−1bn × 2m < x < x− + 0.00 . . . 01× 2m = x+.

The process of replacing the real number x by a nearby machine number (either x− or
x+) is called rounding, and the error involved is called roundoff error.

10

Roundoff error: Examples

αn

1

Area of n-gon

An = n cos
αn

2
sin

αn

2
=

n

2
sinαn =

n

2
sin

(
2π

n

)
.

A2n =
n

2
sin

αn

2

where

sin
αn

2
=

√
1− cosαn

2
=

√
1−

√
1− sin2 αn

2
.

11

Roundoff error: Examples

αn

1

11

Roundoff error: Examples

αn

1

sin αn
2

sin
αn

2
=

√
1−

√
1− sin2 αn

2
.

For αn ≪ 1,
√

1− sin2 αn ≈ 1.

sin
αn

2
=

√√√√1−
√
1− sin2 αn

2

(
1 +

√
1− sin2 αn

1 +
√

1− sin2 αn

)

=
sinαn√

2
(
1 +

√
1− sin2 αn

)

11

Roundoff error: Examples

αn

1

11

Can we exactly compute Q(f) on computers?

Q(f) =

N∑
j=1

hf (x̄j) (⋆)

where h = (b− a)/N and x̄j = a+ (j − 0.5)h for j = 1, . . . , N .

• Real numbers cannot be represented exactly on computer.
→ We discretize real numbers by introducing of floating numbers.

• Computers do not know functions such as sinx.
→ We discretize functions by interpolation or curve fitting.

12

CORDIC (coordinate rotation digital computer)

Meher et al. 50 years of CORDIC: Algorithms, architectures, and applications, IEEE
Transactions on Circuits and Systems I: Regular Papers 56.9 (2009): 1893-1907.
https://doi.org/10.1109/TCSI.2009.2025803

Abstract
Year 2009 marks the completion of 50 years of the invention of CORDIC (coordinate
rotation digital computer) by Jack E. Volder. The beauty of CORDIC lies in the fact that
by simple shift-add operations, it can perform several computing tasks such as the
calculation of trigonometric, hyperbolic and logarithmic functions, ...

13

https://doi.org/10.1109/TCSI.2009.2025803

The concept of condition

A problem can be viewed as a mapping F : X → Y . Here X is a data space of a given
problem and Y is a result space of a given problem.

• Solving a linear systems of equations Ax = b.
→X = {A,b} and Y = x.

• Computing the roots of a polynomial of order n with real coefficients.
→X consists of polynomial coefficients c0, c1, . . ., cn and Y consists of the n roots
of the polynomial.

14

The concept of condition

Condition number
Condition number is a measure of sensitivity of a problem. Suppose that the input
value x ∈ X is changed by δx ≤ ϵ. Then, the output F (x) changes by
F (x+ δx)− F (x). The relative condition number is defined as

κ = lim
ϵ→0

sup
|δx|ϵ≤ϵ

(
|(F (x+ δx)− F (x)) /F (x)|

|δx/x|

)
.

A problem is called well-conditioned if small changes in the input lead to small
changes in the output.
If a small error made in the input can lead to a drastic difference in the output, the
problem is ill-conditioned.

15

The concept of condition

Ill-conditioned problem
Consider the problem of evaluating

f(x) = tanx.

Take x1 =
π
2 − 0.001 and x1 =

π
2 − 0.002.

|x1 − x2| = 0.001 and |f(x1)− f(x2)| ≈ 500.0. Then, κ ≈ 500.0. The small difference
in x leads to large differences in f . This problem is ill-conditioned.

The condition number is a property of the examined problem, not of the used
algorithm.

16

The concept of stability

An algorithm can be viewed as another mapping F̂ : X → Y . If F̂ for a given F is
accurate for each x ∈ X ,

|F (x)− F̂ (x)|
|F (x)|

≤ ϵ.

Stability

An algorithm F̂ for a problem F is stable if for each x ∈ X ,

|F (x̂)− F̂ (x)|
|F (x̂)|

≤ ϵ

for some x̂ with
|x̂− x|
|x|

≤ ϵ.

17

The concept of stability

• Input data can be perturbed. However, they are in a neighborhood of exact input x,
|x̂− x|/|x| ≤ ϵ.

• Thus, any such x̂ has to be considered as virtually equal to x.
• An algorithm is said to be stable if small errors in the inputs and at each step lead

to small errors in the solution.
• If an algorithm is stable, F̂ (x) is in a neighborhood of F (x̂).
• An algorithm that amplifies errors is called unstable.

18

The concept of stability

ex =

∞∑
k=0

xk

k!
= 1 + x+

x2

2
+

x3

6
+ · · ·

Approximation of ex

Input: x and tol
y = 1, p = 1, and k = 1

while |p| > tol ∗ y do
p = p ∗ x/k
y = y + p

k = k + 1

end while

19

The concept of stability

ex =

∞∑
k=0

xk

k!
= 1 + x+

x2

2
+

x3

6
+ · · ·

Approximation of ex

Input: x and tol
y = 1, p = 1, and k = 1

while |p| > tol ∗ y do
p = p ∗ x/k
y = y + p

k = k + 1

end while

19

The concept of stability

We can have a stable algorithm by using the
identity ex = 1/e−x when x < 0.

Approximation of ex when x < 0

Input: x and tol
y = 1, p = 1, and k = 1

while |p| > tol ∗ y do
p = p ∗ (−x)/k

y = y + p

k = k + 1

end while
y = 1/y

20

Part 2. Numerical quadrature

Numerical quadrature

Let f(x) be a real-valued function of a real variable, defined on a finite interval [a, b].
Our aim is to compute the value of the integral∫ b

a
f(x) dx.

• Quadrature is a historical term which means determining area.
• Numerical quadrature is computing the approximate evaluation of such a definite

integral.

21

Numerical quadrature

Almost all rules of quadratures can be written as weighted sums of function values∫ b

a
f(x) dx ≈ Q(f) =

n∑
j=0

wjf(xj)

with weights wj and pairwise different nodes xj , where

a = x0 < x1 < · · · < xn−1 < xn = b.

22

Numerical quadrature

• Numerical quadrature is based on polynomial interpolation.
• Integrand function f is sampled at a finite set of points, x0, x1, . . . , xn.
• Interpolating polynomial p(x) of f(x) for the nodes xj is chosen.
• In practice, interpolating polynomial is not determined explicitly but used to

determine weights corresponding to nodes.

23

Interpolation

Suppose that an unknown function f(x) with values at n distinct points
x0 < x1 < x2 < · · · < xn. This means f(x0), . . . , f(xn) are given. The interpolation
problem is to construct a function I(x) that passes through these points.

I(xj) = f(xj), 0 ≤ j ≤ n. (1)

• The points x0, x1, x2, . . . , xn are called the interpolation points.
• The property of passing through these points is referred to as interpolating the

data.
• The function that interpolates the data is an interpolant or an interpolating

polynomial.

24

Lagrange form of the interpolation polynomial

Let

In(x) =

n∑
j=0

f(xj)L
n
j (x)

where Ln
j (x) are n+ 1 polynomials of degree n. By (1),

Ln
j (xi) = δi,j , i, j = 0, . . . , n. (2)

An obvious way of constructing polynomials Ln
j (x) of degree n that satisfy is the

following:

Ln
j (x) =

(x− x0) · · · (x− xj−1)(x− xj+1) · · · (x− xn)

(xj − x0) · · · (xj − xj−1)(xj − xj+1) · · · (xj − xn)
, 0 ≤ j ≤ n. (3)

25

Lagrange polynomial

If the Lagrange polynomials Ln
j (x) is used for the representation of p(x), then

Q(f(x)) =

∫ b

a
p(x) dx =

∫ b

a

n∑
j=0

f(xj)L
n
j (x) dx

=

n∑
j=0

(
f(xj)

∫ b

a
Ln
j (x) dx

)
.

The weights are determined by

wj =

∫ b

a
Lj(x) dx, j = 0, . . . , n.

26

Lagrange polynomial

Since the interpolation polynomial is unique,
n∑

j=0

Ln
j (x) = 1.

Thus,
n∑

j=0

wj =

∫ b

a

n∑
j=0

Ln
j (x) dx = b− a.

This leads to the sum of the weights is always equal to b− a when the interpolating
polynomial is used for numerical quadrature.

27

Condition of numerical quadrature

Suppose all input fluctuations are less than ϵ > 0,

|δQ(f)| =

∣∣∣∣∣∣
n∑

j=0

wjδfj

∣∣∣∣∣∣ ≤ ϵ

n∑
j=0

|wj |

where fj = f(xj).

• Recall
∑n

j=0wj = b− a.
• If wj are positive for all j = 0, . . . , n, then the order of magnitude of the RHS is
O(ϵ). The numerical quadrature problem is well-conditioned.

• If some wj are negative, then the RHS might be very large. The numerical
quadrature problem can be ill-conditioned.

28

Numerical quadrature

Consider Lagrange interpolation in equidistant nodes in the integration interval [a, b]:

xj = a+ jh, h =
b− a

n
, j = 0, . . . , n.

Lagrange polynomials are given by

Li(x) =

n∏
j=0
j ̸=i

x− xj
xi − xj

, j = 0, . . . , n.

Lagrange interpolating polynomial is given by

pn(x) =

n∑
j=0

Lj(x)f(xj).

Then, ∫ b

a
f(x) dx ≈

∫ b

a
pn(x) dx =

n∑
j=0

f(xj)

∫ b

a
Lj(x) dx

29

Midpoint rule

a xm b

f(x)

x

y

The midpoint rule is for n = 0 and
xm = (b+ a)/2. This leads to the
1-point quadrature formula∫ b

a
f(x) dx ≈ (b− a)f

(
a+ b

2

)
.

30

Trapezoidal rule

a b

f(x)

p1(x)

x

y The trapezoidal rule is for n = 1:

p1 = f(a)
x− b

a− b
+ f(b)

x− a

b− a

with xj = a+ jh and h = b− a.∫ b

a

b− x

b− a
dx =

∫ b

a

x− a

b− a
dx =

b− a

2
.

Thus,∫ b

a
f(x) dx ≈ (b− a)

2
(f(a) + f(b)) .

31

Simpson’s rule

Simpson’s rule is for n = 2:

p2 = f(a)
(x− b)(x− c)

(a− b)(a− c)
+ f(c)

(x− a)(x− b)

(c− a)(c− b)
+ f(b)

(x− a)(x− c)

(b− a)(b− c)

with xj = a+ jh, h = b− a, and c = (b+ a)/2. Simpson’s rule is given by∫ b

a
f(x) dx ≈ (b− a)

6
(f(a) + 4f(c) + f(b)) .

32

Midpoint rule

Suppose f(x) is a smooth function. The Taylor expansion of f at xm = (a+ b)/2 gives

f(x) = f(xm) + (x− xm)f ′(xm) +
(x− xm)2

2
f ′′(ξ)

where ξ ∈ (xm, x). Integrating the Taylor expansion gives∫ b

a
f(x) dx =

∫ b

a

(
f(xm) + (x− xm)f ′(xm) +

(x− xm)2

2
f ′′(ξ)

)
dx

= (b− a)f(xm) +
1

2

∫ b

a
(x− xm)2f ′′(ξ) dx.

This leads to an expression for the error∣∣∣∣∫ b

a
f(x) dx− (b− a)f(xm)

∣∣∣∣ = 1

2

∣∣∣∣∫ b

a
(x− xm)2f ′′(ξ) dx

∣∣∣∣ .
33

Midpoint rule

∣∣∣∣∫ b

a
f(x) dx− (b− a)f(xm)

∣∣∣∣ = 1

2

∣∣∣∣∫ b

a
(x− xm)2f ′′(ξ) dx

∣∣∣∣ .
The RHS is given by

1

2

∣∣∣∣∫ b

a
(x− xm)2f ′′(ξ) dx

∣∣∣∣ ≤ 1

2

∫ b

a
(x− xm)2

∣∣f ′′(ξ)
∣∣ dx

≤ M

2

∫ b

a
(x− xm)2 dx

=
M

24
(b− a)3

where M = maxx∈[a,b] |f ′′(x)|.

34

Composite midpoint rule

Let [a, b] be partitioned into n equidistant subintervals (xj , xj+1) of length
h = xj+1 − xj = (b− a)/n. x0 = a and xn = b.∫ b

a
f(x) dx =

n−1∑
j=0

∫ xj+1

xj

f(x) dx

≈
n−1∑
j=0

hf

(
xj + xj+1

2

)
.

For each interval [xj , xj+1],∣∣∣∣∣
∫ xj+1

xj

f(x) dx− hf

(
xj + xj+1

2

)∣∣∣∣∣ ≤ Mj

24
h3

where Mj = maxx∈[xj ,xj+1] |f ′′(x)|.

35

Composite midpoint rule

Let M = max0≤j≤n−1{Mj}.∣∣∣∣∫ b

a
f(x) dx−Qmid(f)

∣∣∣∣ ≤ n−1∑
j=0

h3

24
M.

Recall that h = (b− a)/n and hn = b− a.∣∣∣∣∫ b

a
f(x) dx−Qmid(f)

∣∣∣∣ ≤ (b− a)
h2

24
M.

36

Trapezoidal rule

The local error in the trapezoidal rule is given by∣∣∣∣∫ b

a
f(x) dx− (b− a)

2
(f(a) + f(b))

∣∣∣∣ .
Suppose f is a smooth function. The Taylor expansion of f at xm = (a+ b)/2 gives

f(x) =f(xm) + (x− xm)f ′(xm) +
(x− xm)2

2
f ′′(ξ1),

f(a) =f(xm) + (a− xm)f ′(xm) +
(a− xm)2

2
f ′′(ξ2),

f(b) =f(xm) + (b− xm)f ′(xm) +
(b− xm)2

2
f ′′(ξ3)

where ξ1 ∈ (xm, x), ξ2 ∈ (a, xm), and ξ3 ∈ (xm, b).

37

Trapezoidal rule

Integrating the Taylor expansion gives∫ b

a
f(x) dx = (b− a)f(xm) +

1

2

∫ b

a
(x− xm)2f ′′(ξ) dx.

Note that a− xm = −(b− a)/2 and b− xm = (b− a)/2. Thus,

f(a) + f(b) = 2f(xm) +
(b− a)2

8
f ′′(ξ2) +

(b− a)2

8
f ′′(ξ3).

We can obtain∣∣∣∣∫ b

a
f(x) dx− (b− a)

2
(f(a) + f(b))

∣∣∣∣ ≤ 1

2

∫ b

a
(x− xm)2

∣∣f ′′(ξ1)
∣∣ dx

+
(b− a)3

16

∣∣f ′′(ξ2)
∣∣+ (b− a)3

16

∣∣f ′′(ξ3)
∣∣ .

38

Trapezoidal rule

∣∣∣∣∫ b

a
f(x) dx− (b− a)

2
(f(a) + f(b))

∣∣∣∣ ≤ 1

2

∫ b

a
(x− xm)2

∣∣f ′′(ξ1)
∣∣ dx

+
(b− a)3

16

∣∣f ′′(ξ2)
∣∣+ (b− a)3

16

∣∣f ′′(ξ3)
∣∣ .

Let M = maxx∈[a,b] |f ′′(x)|. Then,∣∣∣∣∫ b

a
f(x) dx− (b− a)

2
(f(a) + f(b))

∣∣∣∣ ≤ M

6
(b− a)3.

39

Composite trapezoidal rule

Let [a, b] be partitioned into n equidistant subintervals (xj , xj+1) of length
h = xj+1 − xj = (b− a)/n. x0 = a and xn = b.∫ b

a
f(x) dx =

n−1∑
j=0

∫ xj+1

xj

f(x) dx

≈
n−1∑
j=0

h

2
(f(xj) + f(xj+1)) .

The global error is given by∣∣∣∣∫ b

a
f(x) dx−Qtrap(f)

∣∣∣∣ ≤ (b− a)
h2

6
M

where Mj = maxx∈[xj ,xj+1] |f ′′(x)| and M = max0≤j≤n−1{Mj}.

40

Some references for numerical quadratures

• Gubner, Gaussian Quadrature and the Eigenvalue Problem
https://gubner.ece.wisc.edu/gaussquad.pdf,

• Chap 12 in Numerical Computing with Matlab
https://epubs.siam.org/doi/book/10.1137/1.9780898717952.

41

https://gubner.ece.wisc.edu/gaussquad.pdf
https://epubs.siam.org/doi/book/10.1137/1.9780898717952

Part 3. Finite difference method for
partial differential equations

Initial value problem and boundary value problem

An initial value problem for a first-order ordinary differential equation is given by

y′ = f(t, y), y(t0) = y0.

Boundary value problems are differential equations that are subject to boundary
conditions. For example,

y′′ + y = 0

with y(0) = 1 and y(π/2) = 1.

42

Time-Dependent 1D Heat Equation

Consider the simple example of the time-dependent 1D heat equation

d
dt

u− d
dx

(
d
dx

u

)
= 0, on Ω = [0, 1]

with the boundary condition

u(0, t) = ua(t), u(1, t) = ub(t) for all t ∈ [0, T]

and the initial condition

u(x, 0) = u0(x), for all x ∈ [0, 1].

43

Time-Dependent 1D Heat Equation

We need

• Space discretization ∆x = h = 1/N and grid xi = ih, i = 0, . . . , N ,
• Final time T , time discretization ∆t = k = T/M , and tm = mk,
• umi : approximate solution at (xi, tm).

44

Difference formula

By using the forward difference, we can compute the derivative of a function f(x) at a
point x0.

D(f, h) =
f(x0 + h)− f(x0)

h
≈ f ′(x0).

Let E(h) be the absolute error in the approximation:

E(h) = |f ′(x0)−D(f, h)|.

45

Truncation error in difference formula

The approximation can be derived by using a Taylor series. Expand f(x0+h) around x0:

f(x0 + h) = f(x0) + hf ′(x0) +
h2

2
f ′′(x0) +O(h3).

Then,
f ′(x0) =

f(x0 + h)− f(x0)

h
− h

2
f ′′(x0) +O(h2).

The absolute error in the approximation can be written as

D(f, h) = f ′(x0) +
h

2
f ′′(x0) + · · · .

From the leading term of the error we can see that

truncation error ∼ Ch as h → 0.

46

Rounding error in difference formula

Suppose that f is well-conditioned. Then for any evaluation f̂ of the function,

f̂ = f + δ, |δ| < ϵm.

The computed value of D(f, h) is

D̂(f, h) = D(f, h) +
δx0+h − δx0

h

which introduces a rounding error

|rounding error| ≤ ϵm + ϵm
h

=
2ϵm
h

47

The absolute error in the approximation

E(h) = truncation error + rounding error

≤ Ch+
2ϵm
h

.

Suppose that f(x) = e2x.

48

The absolute error in the approximation

E(h) = truncation error + rounding error

≤ Ch+
2ϵm
h

.

Suppose that f(x) = e2x.
Choose x0 = 0.
f ′(x0) = 2.

48

The absolute error in the approximation

E(h) = truncation error + rounding error

≤ Ch+
2ϵm
h

.

Suppose that f(x) = e2x.
Choose x0 = 1.
f ′(x0) ≈ 14.7781121979.

48

Difference formula

We can use the difference formula for first-order derivative in t

• Forward difference
d
dt

umi =
um+1
i − umi

k
+O(k)

• Backward difference
d
dt

umi =
umi − um−1

i

k
+O(k)

• Central difference
d
dt

umi =
um+1
i − um−1

i

2k
+O(k2)

49

Time-Dependent 1D Heat Equation

Using three-point central formula for second-order partial derivative in x,

d2

dx2
umi =

umi−1−2umi + umi+1

h2
, for i = 1, . . . , N − 1.

50

Explicit forward Euler method

Then, we can obtain the following linear system

um+1
1

um+1
2

um+1
3

...
um+1
N−2

um+1
N−1


=



um
1

um
2

um
3

...
um
N−2

um
N−1


+

k

h2



−2 1

1 −2 1

1 −2 1

.
1 −2 1

1 −2





um
1

um
2

um
3

...
um
N−2

um
N−1


+

k

h2



um
0

0

0
...
0

um
N



51

Explicit forward Euler method

Let

A =



2 −1

−1 2 −1

−1 2 −1
.

−1 2 −1

−1 2


∈ R(N−1)×(N−1).

Suppose ua(t) = ub(t) = 0. Let u(m) = (um1 , um1 , . . . , umN−1)
T . If the initial condition,

u(0) is the eigenvector of A,
u(m) = (1− sλ)mu(0)

where s = k/h2.

52

Stability for explicit forward Euler method

There is no external heat source, f = 0, u(m) would tends to 0 with t tending to infinity.
That means

|1− sλ| < 1.

The eigenvalues of A, λi are

2 + 2 cos

(
iπ

N

)
, for i = 1, . . . , N − 1

and its corresponding eigenvectors vi are

(vi)j = sin

(
ijπ

N

)
, for i, j = 1, . . . , N − 1.

53

Stability for explicit forward Euler method

We can obtain
s <

1

1 + cos
(
iπ
N

)
for i = 1, . . . , N − 1. This gives

k

h2
<

1

2
.

We have to choose the time step size k < 1
2h

2. k
h2 is an important measure for the

stability of explicit forward Euler method. It is called the Courant number.
Any other choice of initial condition can be represented as a linear combination of
eigenvectors such that, due to the linearity of the equation, all statement hold also for
this case.

54

Some references for numerical analysis

• Quarteroni, Sacco, and Saleri, Numerical mathematics
https://link.springer.com/book/10.1007/b98885,

• Ascher and Greif, A First Course in Numerical Methods
https://epubs.siam.org/doi/10.1137/9780898719987,

• Thomas, Numerical Partial Differential Equations: Finite Difference Methods
https://link.springer.com/book/10.1007/978-1-4899-7278-1.

55

https://link.springer.com/book/10.1007/b98885
https://epubs.siam.org/doi/10.1137/9780898719987
https://link.springer.com/book/10.1007/978-1-4899-7278-1

	Preliminaries
	quadrature
	fdmpdes

