Quantum noise of ground base interferometer gravitational wave detector

June Gyu Park

1. Standard quantum limit of gravitational wave detector

LIGO sensitivity

Quantum mechanics

Light(Electromagnetic wave)

Wave-particle duality

Photoelectric effect

Photo detector

Wave-particle duality

Wave-particle duality

Number of observed photon is proportional to intensity of electric field

Double slit interference

Gravitational wave detector

Standard quantum limit of GW detector

Standard quantum limit of gravitational wave detector Shot noise + Radiation pressure noise

Shot noise

Photon Counting Statistics

h = $6.62607015 \times 10^{-34} \text{ J} \cdot \text{Hz}^{-1}$

Low intensity

Signal to Noise ratio
$$=$$
 $\frac{N}{\sqrt{N}}$

We say that it has shot noise limit sensitivity

Standard quantum limit of GW detector

Standard quantum limit of gravitational wave detector Shot noise + Radiation pressure noise

Radiation pressure noise

- Stored energy is very high (750 kW)
- Desired sensitivity is very high ($10^{-21} \sim 10^{-24}$)

Standard quantum limit of GW detector

Standard quantum limit of gravitational wave detector Shot noise + Radiation pressure noise

LIGO sensitivity

Standard quantum limit of GW detector

Standard quantum limit of gravitational wave detector Shot noise + Radiation pressure noise

LIGO sensitivity

Fabry-perot cavity

LIGO sensitivity

Classical electromagnetic wave

Quantum noise of coherent light

Heurs M. 2018 Gravitational wave detection using laser interferometry beyond the standard quantum limit.Phil. Trans. R. Soc. A 376: 20170289.

Phase and amplitude quadrature

 $\Delta x \Delta p \ge \frac{\hbar}{2}$

Uncertainty principle

Radiation pressure noise

Heurs M. 2018 Gravitational wave detection using laser interferometry beyond the standard quantum limit.Phil. Trans. R. Soc. A 376: 20170289.

2. Squeezed vacuum injection in gravitational wave detector

HO ART HALL

Gravitational wave detector

Bright port and dark port

Bright

Dark

Gravitational wave detector

Quantum noise of gravitational wave detector

Quantum vacuum fluctuation

Average energy = zeropoint energy

Quantum noise of gravitational wave detector

Gravitational wave detector

Squeezed light

Heurs M. 2018 Gravitational wave detection using laser interferometry beyond the standard quantum limit.Phil. Trans. R. Soc. A 376: 20170289.

NATURE PHYSICS DOI: 10.1038/NPHYS2083

LETTERS

Non linear crystal

Every filed which are participated in Non-linear conversion process, Must obey energy, momentum conservation.

Even for vacuum field!!

JS Lundeen

Squeezed vacuum

Figure 1.6: Simulation of electric field in time for (a) vacuum state and for (b) squeezed vacuum.

Gravitational wave detector

Quantum noise enhancement of LIGO

Frequency independent squeezing

Optical and noise studies for Advanced Virgo and filter cavities for quantum noise reduction in gravitational-wave interferometric detectors, Eleonora Capocasa, UNIVERSITÉ PARIS DIDEROT (2017)

Frequency independent squeezing

Optical and noise studies for Advanced Virgo and filter cavities for quantum noise reduction in gravitational-wave interferometric detectors, Eleonora Capocasa, UNIVERSITÉ PARIS DIDEROT (2017)

Squeezed light

Heurs M. 2018 Gravitational wave detection using laser interferometry beyond the standard quantum limit.Phil. Trans. R. Soc. A 376: 20170289.

Frequency independent squeezing

Optical and noise studies for Advanced Virgo and filter cavities for quantum noise reduction in gravitational-wave interferometric detectors, Eleonora Capocasa, UNIVERSITÉ PARIS DIDEROT (2017)

Frequency dependent squeezing(FDS)

Optical and noise studies for Advanced Virgo and filter cavities for quantum noise reduction in gravitational-wave interferometric detectors, Eleonora Capocasa, UNIVERSITÉ PARIS DIDEROT (2017)

Frequency dependent squeezing using filter cavity

LIGO sensitivity

Frequency dependent squeezing using filter cavity

Frequency dependent squeezing using filter cavity

Every filed which are participated in Non-linear conversion process, Must obey energy, momentum conservation.

J S Lundeen

Frequency dependent squeezing using filter cavity

Squeezed light

Heurs M. 2018 Gravitational wave detection using laser interferometry beyond the standard quantum limit.Phil. Trans. R. Soc. A 376: 20170289.

Quantum noise side band figure

Frequency dependent squeezing using filter cavity

Fabry-perot cavity

Detuned cavity

Quantum noise side band figure

Figure 1-2: Phasors of amplitude noise (left) and phase noise (right) in the sideband picture. In the frame rotating at the carrier frequency ω the carrier is still in these diagrams while the sidebands rotate at Ω , the signal at $\omega + \Omega$ rotating clockwise while the idler at $\omega - \Omega$ rotates counter clockwise. (Sidebands have equal amplitudes)

Squeezed light

Heurs M. 2018 Gravitational wave detection using laser interferometry beyond the standard quantum limit.Phil. Trans. R. Soc. A 376: 20170289.

Squeeze angle rotation

Frequency dependent squeezing using filter cavity

Frequency dependent squeezing – KAGRA

PHYSICAL REVIEW LETTERS 124, 171101 (2020)

Quantum noise of gravitational wave detector

Einstein-Podolsky-Rosen paradox

Non linear crystal

Parametric down conversion

Every filed which are participated in Non-linear conversion process, Must obey energy, momentum conservation.

JS Lundeen

Einstein-Podolsky-Rosen paradox

EPR squeezing for gravitational wave detector

Non linear crystal

EPR squeezing for gravitational wave detector

EPR squeezing for gravitational wave detector

Generation and control of frequency dependent squeezing via EPR entanglement

Thank you

