중성자별과 상대론적인 유체역학

김진호 한국천문연구원

2024 수치상대론 및 중력파 여름학교

천문연구원

References

Max Camenzind

Stuart L. Shapiro

An Introduction to Modern Astrophysics by Bradley W. Carroll, Dale A. Ostlie

Compact Objects in Astrophysics: White Dwarfs, Neutron Stars and Black Holes by

Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects by

Relativistic Approach

To quantify how relativistic the object is, we can consider two dimensionless quantities as follows:

 $\xi = \frac{G}{R}$

- Black hole: $R = 2GM/c^2$ (Schwarzschild BH), $R = GM/c^2$ (Extreme Kerr BH) -> $\xi = 0.5 \sim 1$.
- Neutron Star: $M \sim 1.4 M_{\odot}$, $R \sim 10$ km -> $\xi \sim 0.2$.

 $P_{\rm rot} \sim 1 {\rm ms} \rightarrow \beta \sim 0.2.$

• Jet: $\beta > 0.99$.

Newtonian Objects

- White Dwarf: $M \sim M_{\oplus}$, $R \sim R_{\oplus} \rightarrow \xi \sim 0.0003$, $\beta \sim 0.0003$.
- Sun: $M \sim 1M_{\odot}$, $R \sim 1.4 \times 10^{6}$ km -> $\xi \sim 10^{-6} \ll 1$.

$$\frac{\delta M}{Rc^2}, \qquad \beta = \frac{v}{c}.$$

Relativistic Objects

General Relativity

$$-\beta^{l}\partial_{l})\tilde{A}_{ij} = \alpha e^{-4\phi} \left(R_{ij} - \frac{1}{3}\gamma_{ij}R \right) - e^{-4\phi} \left(D_{i}D_{j}\alpha - \frac{1}{3}\gamma_{ij}\Delta\alpha \right) + \alpha \left(K\tilde{A}_{ij} - 2\tilde{A}_{il}\tilde{A}_{j}^{l} \right) + \tilde{A}_{il}\partial_{j}\beta^{l} + \tilde{A}_{jl}\partial_{i}\beta^{l} - \frac{2}{3}\beta^{l}{}_{,l}\tilde{A}_{ij} - 8\pi\alpha e^{-4\phi}T_{\mu\nu} \left[\gamma^{\mu}_{i}\gamma^{\nu}_{j} - \frac{1}{3}\gamma^{\mu\nu}\gamma_{ij} \right]$$

General Relativity

Fluid

General Relativity

Conservation of Energy/Momentum

Conservation of Mass

Pressure

Thermal vs Degenerate Pressure

Thermal Pressure characterized by kinetic motion

Degenerate Pressure characterized by quantum states

Fermi energy state

In statistical physics, the distribution function of and ideal gas in equilibrium $f(F) = \frac{1}{1}$

Fermi – Dirac statistics –

Completely degenerate fermion i.e., $T \rightarrow 0$

 μ is called the Fermi energy.

Equation of State by Electron Degeneracy

$$P = \frac{\pi m_e^4 c^5}{h^3} \left[x_F \left(1 + x_F^2 \right)^{\frac{1}{2}} \left(\frac{2}{3} x_F^2 - 1 \right) + \ln \frac{1}{2} \right]$$
$$= \frac{8\pi m_e^4 c^5}{15h^3} \left[x_F^5 - \frac{5}{14} x_F^7 + \frac{5}{24} x_F^9 + \cdots \right]$$
$$= \frac{2\pi m_e^4 c^5}{3h^3} \left[x_F^4 - x_F^2 + \frac{3}{2} \ln \left(2x_F \right) + \cdots \right]$$

Recall that $p_F = m_e cx \sim n_e^{1/3} \sim \rho^{1/3}$.

Above asymptotic limit of the pressure gives polytropic equation of state i.e., $P = K \rho^{\Gamma} = K \rho^{1+1/N}$.

$$\Gamma = \frac{5}{3}:$$
$$\Gamma = \frac{4}{3}:$$

$$\left[x_F + \left(1 + x_F^2\right)^{\frac{1}{2}}\right]$$

- for $x_F \ll 1$: non-relativistic limit
 - for $x_F \gg 1$: ultra-relativistic limit

non-relativistic

relativistic

Equation of State by Electron Degeneracy

Equation of State beyond Neutron Drip

EoS	Composition and model
BPAL12	$n p e \mu$, effective nucleon energy
BGN1H1 BBB1	$n p \Sigma \Lambda \Xi e \mu$, effective baryo $n p e \mu$, Brueckner theory, And Urbana NNN potentials
FPS	$n p e \mu$, effective nucleon energy
BGN2H1 BBB2	$np\Sigma \Lambda \Xi e\mu$, effective baryon $npe\mu$, Brueckner theory, Particular NNN potentials
SLy	$n p e \mu$, effective nucleon energy
BGN1 APR	$n p e \mu$, effective baryon energy $n p e \mu$, variational theory, N Urbana NNN potentials
BGN2	$n p e \mu$, effective nucleon energy

Equation of states based on the non-relativistic modeling.

Neutron Star Equation of State

	Reference
energy functional	Bombaci et al.
	1995 [82]
ryon energy functional	Balberg et al. [47]
, Argonne NN plus	
	Baldo et al. [52]
energy functional	Pandharipande and
	Ravenhall [323]
ryon energy functional	Balberg et al. [47]
, Paris NN plus Urbana	
	Baldo et al. [52]
energy functional	Douchin and
	Haensel [136]
energy functional	Balberg et al. [47]
, Nijmegen NN plus	
	Akmal et al. [26]
energy functional	Balberg et al. [47]

Neutron Star Equation of State

Stellar Structure

Equilibrium Structure of Star

Fluid equation (Euler equation).

Continuity Equation: $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0$

Momentum Equation: $\rho \frac{\partial \vec{v}}{\partial t} + \rho \vec{v} \cdot \nabla \vec{v} + \nabla P = -\rho \nabla \Phi$ 2.

3. Energy Equation:
$$\rho \frac{\partial e}{\partial t} + \vec{v} \cdot \nabla e + \frac{P}{\rho} \nabla \cdot \vec{v} = 0$$

For spherical star (non-rotating, non-magnetized), LHS of 1. Continuity and 3. Energy equation is 0. The remaining equation is 2. Momentum equation and can be rewritten in spherical coordinates as

Lane-Emden Equation

$$\frac{1}{r^2}\frac{d}{dr}\left(\frac{r^2}{\rho}\frac{dP}{dr}\right) = -4\pi G\rho \qquad \text{Polytropic equation of state: } P = K\rho^{\Gamma} = K\rho^{1+1/N}$$

This equation can further be reduced to dimensionless form by writing

$$\rho = \rho_c \theta^N, \ r = a\xi, \ a = \left[\frac{(N+1)K\rho_c^{\frac{1}{N}-1}}{4\pi G}\right]^{1/2}, \text{ where } \rho_c \text{ is the central density.}$$

$$\frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{d\theta}{d\xi} \right) = -\theta^N$$

Boundary conditio

For N=0,
$$\theta(\xi) = 1 - \frac{1}{6}\xi^2$$
, For N=1, $\theta(\xi) = \frac{\sin\xi}{\xi}$, For N=5, $\theta(\xi) = \frac{1}{\sqrt{1 + \xi^2/3}}$

Lane-Emden Equation

on:
$$\theta(0) = 1$$
, $\frac{d\theta(0)}{dr} = 0$.

Analytical solutions are available for particular N values (N=0, 1 and 5)

Solution of Lane-Emden Equation

 π

 ρ/ρ_c

- 1. Conventionally, the equation of state is
 - hard (stiff) when Γ is large or N is small.
 - soft when Γ is small or N is large.
- 2. Density gradient with respect to ξ is
 - small for hard EoS.
 - large for soft EoS.
- 3. Recall that the EoS of relativistic degenerate gas (N=3) is softer than that of non-relativistic gas (N=1.5).
 - Relativistic degenerate gas can form more compact star than non-relativistic counterpart.
- 4. N=5 solution can extend to infinity while the total mass of the solution is finite.

Mass - Radius Relation

$$R = a\xi_s = \sqrt{\frac{(N+1)K}{4\pi G}}\rho_c^{\frac{1-N}{2N}}\xi_s$$

$$M = \int_{0}^{R} 4\pi r^{2} \rho dr = 4\pi a^{3} \rho_{c} \int_{0}^{\xi_{s}} \xi^{2} \theta^{N} dr$$
$$= -4\pi a^{3} \rho_{c} \int_{0}^{\xi_{s}} \frac{d}{d\xi} \left(\xi^{2} \frac{d\theta}{d\xi}\right) d\xi$$
$$= -4\pi a^{3} \rho_{c} \xi_{s}^{2} \left|\theta'\left(\xi_{s}\right)\right|$$
$$= 4\pi \left[\frac{(N+1)K}{4\pi G}\right]^{3/2} \rho_{c}^{\frac{3-N}{2N}} \xi_{s}^{2} \left|\theta'\left(\xi_{s}\right)\right|$$

$$M(R) = 4\pi R^{\frac{3-N}{1-N}} \left[\frac{(N+1)K}{4\pi G} \right]^{N-1} \xi_{s}^{\frac{5-3N}{1-N}} \left| \theta'(\xi_{s}) \right|^{N-1}$$

A star dominated by degenerate pressure becomes smaller as the mass of the star increases. This is the opposite of common sense that we generally know. (N<3).

Stability of Compact Star

- Turning point method: A star is unstable with respect to any mode of radial oscillation when
- 2. (ω^2) . A star is unstable when

where all the perturbation can be written as $\delta f(t, r) = \delta f(r)e^{i\omega t}$.

 $\frac{\partial M(\rho_c)}{\partial \rho_c} < 0. \text{ Or equivalently, } \frac{\partial M(R)}{\partial R} > 0.$

Linear stability analysis: This method linearizes the hydrodynamic equations and finds out oscillation frequency

 $\omega^2 < 0$,

Richard Tolman

Robert Oppenheimer

George Volkoff

Equilibrium Structure in GR

$$\frac{dP}{dr} = -\frac{Gm}{r^2}\rho\left(1 + \frac{P}{\rho c^2}\right)\left(1 + \frac{4\pi r^3 P}{mc^2}\right)\left(1 - \frac{2G}{rc}\right)$$
$$\frac{dM}{dr} = 4\pi r^2\rho$$

Solution of TOV Equation

Solution of TOV equation using polytropic equation of state with N=1, K=100.

Rest Mass Density (ρ_0)

Realistic EoS

Image from Bauswein (2006)

Different EoS

1.4 solar mass neutron star with various EoSs

M-R Relation in Various EoSs

Maximum Mass of NS observed up to now

M-R Relation in Various EoSs

Models of Rapidly Rotating NS

- Rotating star (2D structure) depends on r, z (or theta) coordinates.
 - Consistent Field Method).
 - Hachisu (1986): Newtonian

$$H + \Phi - \int \Omega^2 R dR = C.$$

• Komatsu, Eriguchi & Hachisu (KEH, 1989), Cook, Shapiro & Teukolsky (CST, 1992): GR Metric: $ds^2 = -e^{2\nu}dt^2 + e^{2\alpha}(dt^2)$

Integral equation: $\ln H$

• Integral representation of equilibrium equation (see previous lecture and homework, it is also known as Self-

$$dr^{2} + r^{2}d\theta^{2} + e^{2\beta}r^{2}\sin^{2}\theta \left(d\phi - \omega dt\right)^{2},$$
$$+\nu + \ln\left(1 - \nu^{2}\right) + \int \nu^{2}\frac{d\Omega}{\Omega - \omega}.$$

Limits in Rotation Speed

- In SCF method, rotation speed is to be controlled by axis ratio (ratio between the radius at equator and that at rotation axis).
- One can obtain more rapidly rotating stars by decreasing the axis ratio. No equilibrium body can be found when

 $\Omega > \Omega_K$,

where Ω_K is the Keplerian angular speed. It is also known as mass shedding limit.

0.0002

- Maximum rotation limit of the model also gives a constraint of EoS.

Dynamics

Two Approaches in Hydrodynamics

(쉽게 알아보는 공학이야기 2 - 유체역학 편)

Eulerian Observer

- Eulerian observer stays at rest in Newtonian hydrodynamics.
- In general relativity (3+1 formalism), Eulerian observer is an observer who moves normal to the hypersurface.
 - Zero Angular Momentum Observer (ZAMO) is an example of the Eulerian observer in Kerr geometry or rotating star.
- projection to normal projection of the 4-velocity.

$$v^{i} = \frac{\gamma^{i}_{\mu}u^{\mu}}{-n_{\mu}u^{\mu}} = \frac{u^{i}}{\alpha u^{t}} + \frac{\beta^{i}}{\alpha}$$

$$\Sigma(t+dt)$$

• The 3-velocity of the fluid measured by the Eulerian observer can be expressed as a ratio between spatial

Hydrodynamics in General Relativity

The general relativistic (magneto-)hydrodynamics equations consist of the local conservation laws of the the matter current density and the stress energy tensor (Bianchi identity, energy & momentum conservation).

$$\nabla_{\mu}J^{\mu}=0$$

Baryon number conservation or total mass conservation

$$\nabla_{\mu} \left(\rho u^{\mu} \right) = 0$$

$$\nabla_{\mu}T^{\mu\nu} = 0$$

Spatial projection gives momentum conservation equation

$$\gamma_i^{\nu} \nabla_{\mu} T_{\nu}^{\mu} = 0$$

Normal projection gives energy conservation equation

$$n^{\nu}\nabla_{\mu}T^{\mu}_{\nu}=0$$

Flux Conservative Form of Governing Equation

Hydrodynamic equation in 3+1 formalism. It is also known as Valencia formulation (Banyuls et al. 1997).

$$\frac{\partial \left(\sqrt{\gamma}U\right)}{\partial t} + \frac{\partial \left(\sqrt{-g}F^{i}\right)}{\partial x^{i}} = \sqrt{-g}\Sigma$$

$$U = \begin{pmatrix} D \\ S_j \\ \tau \end{pmatrix} = \begin{pmatrix} \rho W \\ \rho h W^2 v_j \\ \rho h W^2 - P - D \end{pmatrix}$$
$$\Sigma = \begin{bmatrix} 0 \\ T^{\mu\nu} \left(\partial_{\mu} g_{\nu j} - \Gamma^{\lambda}_{\mu\nu} g_{\lambda j} \right) \\ \alpha \left(T^{\mu t} \partial_{\mu} (\ln \alpha) - T^{\mu\nu} \Gamma^{t}_{\mu\nu} \right) \end{bmatrix}$$

$$F^{i} = \begin{bmatrix} D\left(v^{i} - \beta^{i}/\alpha\right) \\ S_{j}\left(v^{i} - \beta^{i}/\alpha\right) + P\delta_{j}^{i} \\ \tau\left(v^{i} - \beta^{i}/\alpha\right) + Pv^{i} \end{bmatrix}$$

Mass conservation (continuity) equation

Momentum conservation equation

Energy equation

Numerical Solution Strategy: Finite Volume Method

Finite volume method enforces the local conservation of the fluid conservative quantities in an control volume.

The conservative quantities on each grid represent the **volume averaged quantities**.

Fluxes are evaluated on the face of the mesh (interface between the control volume).

Solution Strategy

$$+\frac{\partial\left(\sqrt{-g}F^{i}\right)}{\partial x^{i}} = \sqrt{-g}\Sigma$$

$$\frac{U}{-}dV^{(4)} + \int_{\Delta V^{(4)}} \frac{\partial \left(\sqrt{-g}F^{i}\right)}{\partial x^{i}} dV^{(4)} = \int_{\Delta V^{(4)}} \sqrt{-g}\Sigma dV^{(4)}$$

$$\left\| \frac{-\bar{U}\Delta V^{(3)}}{\sqrt{-g}F^{1}dx^{0}dx^{2}dx^{3}} - \int_{\Sigma x^{1}-\frac{\Delta x^{1}}{2}}\sqrt{-g}F^{1}dx^{0}dx^{2}dx^{3} \right) \right\|$$

$$\frac{\Delta x^{2}}{2}\sqrt{-g}F^{1}dx^{0}dx^{1}dx^{3} - \int_{\Sigma x^{2}-\frac{\Delta x^{2}}{2}}\sqrt{-g}F^{1}dx^{0}dx^{1}dx^{3} \right)$$

$$\frac{\Delta x^{2}}{2}\sqrt{-g}F^{1}dx^{0}dx^{1}dx^{2} - \int_{\Sigma x^{3}-\frac{\Delta x^{3}}{2}}\sqrt{-g}F^{1}dx^{0}dx^{1}dx^{2} \right)$$

여백이 부족하여 더 이상의 자세한 설명은 생략한다…

Numerical Simulation

Stationary Star

Stationary Pulsation Mode Test

Radial oscillation modes of the spherical star

Kim et al. (2012)

Structure of the Relativistic Vortex

Density profile of the RMHD vortex in the rest frame of the vortex

Density profile of the boosted RMHD vortex

RMHD Vortex Movie

Time = 0.0

Accuracy Analysis

RMHD Vortex Interacting with a Shock

RMHD Vortex Interacting with a Shock

Time = 0.0

Relativistic Jet Propagation

Jet to ambient density ratio = 0.01 Mach number: 6

Time = 0.0

Log₁₀p

Recent Works

Jet simulation

Kim et al. in preparation

Accretion Disk around BH and Launching of Jets

Kim et al. (2017)

Three dimensional simulation

Preliminary result using KISTI Nurion with 28,000 cpus

Pulsation of Rapidly Rotating Neutron Star

Kim et al. in preparation

Self-Gravitating Disk around NS

Kim et al. (2024)

Adaptive Mesh Refinement (AMR)

Credit: Chombo webpage

Shocktube with AMR

Refinement Level

Vortex interacting with shock

Kelvin-Helmholtz Instability

7	.0	
6	.5	
6	.0	
5	.5	
5	.0	Level
4	.5	
4	.0	
3	.5	
. ר	0	

Comparison: Advection

Relativistic Ray-tracing with GPU acceleration

그림 5: 블랙홀 주변 디스크에 대한 이미지. T $\theta = 10^{\circ}$, Botton Right: $\theta = 20^{\circ}$

그림 5: 블랙홀 주변 디스크에 대한 이미지. Top Left: $\theta = 2^{\circ}$, Top Right: $\theta = 5^{\circ}$, Bottom Left: