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What is a Star?

DegenerateThermal Radiation Newton General 
Relativity

Pressure GravityHydrostatic Equilibrium
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Gravity



Relativistic Approach

To quantify how relativistic the object is, we can consider two dimensionless quantities as follows: 

,      .ξ =
GM
Rc2

β =
v
c

•White Dwarf:  -> . 

•Sun:  -> .

M ∼ M⊕, R ∼ R⊕ ξ ∼ 0.0003, β ∼ 0.0003

M ∼ 1M⊙, R ∼ 1.4 × 106km ξ ∼ 10−6 ≪ 1

•Black hole:  (Schwarzschild BH),  (Extreme Kerr BH) -> . 

•Neutron Star: ,  -> . 

                               -> . 

•Jet: .

R = 2GM/c2 R = GM/c2 ξ = 0.5 ∼ 1

M ∼ 1.4M⊙ R ∼ 10km ξ ∼ 0.2

Prot ∼ 1ms β ∼ 0.2

β > 0.99

Relativistic Objects

Newtonian Objects



General Relativity

Space-time tells matter how to move, matter tells space-time how to curve. 
by John Wheeler

Gab = Rab −
1
2

Rgab = 8πTab

3+1 ADM formalism 

BSSN 

Z4C
현영환 박사님 강의 참고



General Relativity

Space-time tells matter how to move, matter tells space-time how to curve. 
by John Wheeler

 neutron star1.4M⊙

 neutrons1.67 × 1057

1 second for geodesic motion

 years5.302 × 1049
Age of Universe 

 years1.38 × 109≫

Geodesic Motion 

d2xa

dτ2
+ Γa

bc
dxb

dτ
dxc

dτ
= 0



Fluid



General Relativity

Space-time tells matter how to move, matter tells space-time how to curve. 
by John Wheeler

,  

, .

Tab = ρ0huaub + Pgab Ja = ρ0ua

∇aTab = 0 ∇aJa = 0

Conservation of Energy/Momentum Conservation of Mass

ρ : rest mass fluid density

P : gas pressure
h : specific enthalpy
ua : four-velocity of the fluid



What is a Star?

DegenerateThermal Radiation Newton General 
Relativity

Pressure GravityHydrostatic Equilibrium

Star



Pressure



Thermal vs Degenerate Pressure

Thermal Pressure 

characterized by kinetic motion

Degenerate Pressure 

characterized by quantum states



Fermi energy state
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Energy (E/EF)

T=0
T>0

f(E) =
1

e(E−μ)/kT ± 1

In statistical physics, the distribution function of  and ideal gas in equilibrium

Fermi - Dirac statistics Bose - Einstein statistics
Completely degenerate fermion i.e.,  

 is called the Fermi energy.

T → 0
μ

f(E) = {1, E ≤ EF

0, E > EF

f(E) =
1

e(E−EF)/kT + 1



Equation of State by Electron Degeneracy

P =
πm4

e c5

h3 [xF (1 + x2
F)

1
2 ( 2

3
x2

F − 1) + ln [xF + (1 + x2
F)

1
2]]

=
8πm4

e c5

15h3 [x5
F −

5
14

x7
F +

5
24

x9
F + ⋯] for xF ≪ 1

=
2πm4

e c5

3h3 [x4
F − x2

F +
3
2

ln (2xF) + ⋯] for xF ≫ 1

: non-relativistic limit

: ultra-relativistic limit

Recall that . 

Above asymptotic limit of the pressure gives polytropic equation of state i.e., .

pF = mecx ∼ n1/3
e ∼ ρ1/3

P = KρΓ = Kρ1+1/N

 : non-relativistic 

 : relativistic

Γ =
5
3

Γ =
4
3



Equation of State by Electron Degeneracy
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Equation of State beyond Neutron Drip

Up to neutron drip density: 
Relativistic electron degeneracy 
pressure ( )P ∼ ρ4/3

Douchin & Haensel (2001) 
a.k.a. SLy EoS

Neutron degeneracy 
pressure



Neutron Star Equation of State

Equation of states based on the non-relativistic modeling.



Neutron Star Equation of State



Stellar Structure



Equilibrium Structure of Star
Pressure 
Gradient

Gravity

∇P

−ρ∇Φ

Fluid equation (Euler equation). 

1. Continuity Equation:  

2. Momentum Equation:  

3. Energy Equation: 

∂ρ
∂t

+ ∇ ⋅ (ρ ⃗v) = 0

ρ
∂ ⃗v
∂t

+ ρ ⃗v ⋅ ∇ ⃗v + ∇P = − ρ∇Φ

ρ
∂e
∂t

+ ⃗v ⋅ ∇e +
P
ρ

∇ ⋅ ⃗v = 0

For spherical star (non-rotating, non-magnetized), LHS of 1. Continuity and 3. Energy equation is 0. The remaining 

equation is 2. Momentum equation and can be rewritten in spherical coordinates as

dP
dr

= − ρ
GMr

r2
where  Mr = 4π∫

r

0
ρ(r)r2dr 1

r2

d
dr ( r2

ρ
dP
dr ) = − 4πGρ



Lane-Emden Equation
1
r2

d
dr ( r2

ρ
dP
dr ) = − 4πGρ Polytropic equation of state: P = KρΓ = Kρ1+1/N

This equation can further be reduced to dimensionless form by writing 

,  ,  , where  is the central density.ρ = ρcθN r = aξ a = [ (N + 1) Kρ
1
N −1
c

4πG ]
1/2

ρc

1
ξ2

d
dξ (ξ2 dθ

dξ ) = − θN Lane-Emden Equation

Boundary condition: , .θ(0) = 1
dθ(0)

dr
= 0

Analytical solutions are available for particular N values (N=0, 1 and 5)

For N=0, ,      For N=1, ,      For N=5, θ(ξ) = 1 −
1
6

ξ2 θ(ξ) =
sin ξ

ξ
θ(ξ) =

1
1 + ξ2/3



Solution of Lane-Emden Equation
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1. Conventionally, the equation of state is 

•hard (stiff) when  is large or N is small. 

•soft when  is small or N is large. 

2. Density gradient with respect to  is 

•small for hard EoS. 

•large for soft EoS. 

3. Recall that the EoS of relativistic degenerate gas 
(N=3) is softer than that of non-relativistic gas 
(N=1.5). 

•Relativistic degenerate gas can form more compact 
star than non-relativistic counterpart. 

4. N=5 solution can extend to infinity while the total 
mass of the solution is finite.

Γ

Γ

ξ



Mass - Radius Relation

R = aξs =
(N + 1) K

4πG
ρ

1 − N
2N

c ξs

M = ∫
R

0
4πr2ρdr = 4πa3ρc ∫

ξs

0
ξ2θNdr

= −4πa3ρc ∫
ξs

0

d
dξ (ξ2 dθ

dξ ) dξ

= −4πa3ρcξ2
s θ′￼(ξs)

= 4π [ (N + 1) K
4πG ]

3/2

ρ
3 − N

2N
c ξ2

s θ′￼(ξs)

M (R) = 4πR
3 − N
1 − N [ (N + 1) K

4πG ]
N

N − 1

ξ
5 − 3N
1 − N

s θ′￼(ξs)

A star dominated by degenerate pressure becomes smaller 
as the mass of the star increases. This is the opposite of 

common sense that we generally know. (N<3).



Stability of Compact Star

1. Turning point method: A star is unstable with respect to any mode of radial oscillation when 

 Or equivalently,  

2. Linear stability analysis: This method linearizes the hydrodynamic equations and finds out oscillation frequency 
( ). A star is unstable when 

,  

       where all the perturbation can be written as .

∂M (ρc)
∂ρc

< 0.
∂M (R)

∂R
> 0.

ω2

ω2 < 0

δf(t, r) = δf(r)eiωt



Equilibrium Structure in GR

T O V

Richard 
Tolman

Robert 
Oppenheimer

George 
Volkoff

 
dP
dr

= −
Gm
r2

ρ (1 +
P

ρc2 ) (1 +
4πr3P
mc2 ) (1 −

2Gm
rc2 )

−1

dM
dr

= 4πr2ρ

TOV Equation



Solution of TOV Equation
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Solution of TOV equation using polytropic equation of state with N=1, K=100.



Realistic EoS

Image from Bauswein (2006)



Different EoS
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1.4 solar mass neutron star with various EoSs



M-R Relation in Various EoSs

Maximum Mass of NS 
observed up to now



M-R Relation in Various EoSs

Vertical line follows N=1 polytope in Lane-
Emden Solution

 N < 1
Γ > 2

 1 < N < 3
4/3 < Γ < 2

Recall that 

M (R) = 4πR
3 − N
1 − N [ (N + 1) K

4πG ]
N

N − 1

ξ
5 − 3N
1 − N

s θ′￼(ξs)



Models of Rapidly Rotating NS
•Rotating star (2D structure) depends on r, z (or theta) coordinates. 

•Integral representation of equilibrium equation (see previous lecture and homework, it is also known as Self-
Consistent Field Method). 

•Hachisu (1986): Newtonian 

. 

•Komatsu, Eriguchi & Hachisu (KEH, 1989), Cook, Shapiro & Teukolsky (CST, 1992): GR 

Metric: , 

Integral equation: .

H + Φ − ∫ Ω2RdR = C

ds2 = − e2νdt2 + e2α (dr2 + r2dθ2) + e2βr2 sin2 θ (dϕ − ωdt)2

ln H + ν + ln (1 − v2) + ∫ v2 dΩ
Ω − ω



Limits in Rotation Speed

- In SCF method, rotation speed is to be controlled by 
axis ratio (ratio between the radius at equator and that 
at rotation axis). 

- One can obtain more rapidly rotating stars by 
decreasing the axis ratio. No equilibrium body can be 
found when 

 , 

where  is the Keplerian angular speed. It is also 
known as mass shedding limit. 

- Maximum rotation limit of the model also gives a 
constraint of EoS.

Ω > ΩK

ΩK



Dynamics



Two Approaches in Hydrodynamics

출처: 삼성 디스플레이 뉴스룸 
(쉽게 알아보는 공학이야기 2 – 유체역학 편)



•In general relativity (3+1 formalism), Eulerian observer is an observer who moves normal to the hypersurface. 

•Zero Angular Momentum Observer (ZAMO) is an example of the Eulerian observer in Kerr geometry or rotating 
star.

•The 3-velocity of the fluid measured by the Eulerian observer can be expressed as a ratio between spatial 
projection to normal projection of the 4-velocity.

•Eulerian observer stays at rest in Newtonian hydrodynamics.

vi =
γi

μuμ

−nμuμ
=

ui

αut
+

βi

α

Eulerian Observer

현영환 박사님 강의 참고



The general relativistic (magneto-)hydrodynamics equations consist of the local conservation laws of the the matter 
current density and the stress energy tensor (Bianchi identity, energy & momentum conservation).

∇μTμν = 0∇μJμ = 0

Baryon number conservation or total mass conservation 

∇μ(ρuμ) = 0

Spatial projection gives momentum conservation equation 

 

Normal projection gives energy conservation equation 

γν
i ∇μTμ

ν = 0

nν ∇μTμ
ν = 0

Hydrodynamics in General Relativity



Mass conservation (continuity) equation

Momentum conservation equation

Energy equation

Flux Conservative Form of Governing Equation

∂ ( γU)
∂t

+
∂ ( −gFi)

∂xi
= −gΣ

U =
D
Sj
τ

=

ρW
ρhW2vj

ρhW2 − P − D
Fi =

D (vi − βi/α)
Sj (vi − βi/α) + Pδi

j

τ (vi − βi/α) + Pvi

Σ =

0

Tμν (∂μgνj − Γλ
μνgλj)

α (Tμt∂μ(ln α) − TμνΓt
μν)

Hydrodynamic equation in 3+1 formalism. 
It is also known as Valencia formulation (Banyuls et al. 1997). 



Numerical Solution Strategy: Finite Volume Method

Finite volume method enforces the 
local conservation of the fluid 
conservative quantities in an control 
volume.

Ū =
∫

ΔV
γUd3x

∫
ΔV

γd3x
F̄i

The conservative quantities on each 
grid represent the volume averaged 
quantities.

Fluxes are evaluated on the face of 
the mesh (interface between the 
control volume). 



Solution Strategy

∫ΔV(4)

∂ ( γU)
∂t

dV(4) + ∫ΔV(4)

∂ ( −gFi)
∂xi

dV(4) = ∫ΔV(4)

−gΣdV(4)

∂ ( γU)
∂t

+
∂ ( −gFi)

∂xi
= −gΣ

Conservative form of 
the equation

Volume integration 
over time and spatial 
volume gives:

Final form of the 
numerically adapted 
equation

ŪΔV(3)
x0+Δx0

− ŪΔV(3)
x0

=

−(∫Σx1+ Δx1
2

−gF1dx0dx2dx3 − ∫Σx1− Δx1
2

−gF1dx0dx2dx3)
−(∫Σx2+ Δx2

2

−gF1dx0dx1dx3 − ∫Σx2− Δx2
2

−gF1dx0dx1dx3)
−(∫Σx3+ Δx3

2

−gF1dx0dx1dx2 − ∫Σx3− Δx3
2

−gF1dx0dx1dx2)
+∫ΔV(4)

−gΣdV(4)



여백이 부족하여 
더 이상의 자세한 설명은 생략한다…



Numerical Simulation



Stationary Star
Non-rotating star Rotating star

Kim et al. (2012)



Radial oscillation modes of the spherical star

Stationary Pulsation Mode Test

Fourier Transformation

Kim et al. (2012)



Structure of the Relativistic Vortex

Density profile of the RMHD vortex in the 
rest frame of the vortex
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Density profile of the boosted 
RMHD vortex

Lorentz 
Transformation

Balsara & Kim (2016)



RMHD Vortex Movie

Balsara & Kim (2016)



Accuracy Analysis

Hydrodynamic Vortex MHD Vortex

Our code is matched with the designed order of accuracy.

Balsara & Kim (2016)

𝐿𝟣 norm ∼ (𝛥𝑥)𝑛,  𝑛 is the order of accuracy



RMHD Vortex Interacting with a Shock

Post shock region

Pre-shock 
region

Balsara & Kim (2016)

𝜌𝟣, 𝑣𝟣, 𝑃𝟣

𝜌𝟤, 𝑣𝟤, 𝑃𝟤
𝜌𝟣 < 𝜌𝟤 
𝑃𝟣 < 𝑃𝟤 
𝑣𝟣 > 𝑣𝟤

Stationary
 Shock



RMHD Vortex Interacting with a Shock

Balsara & Kim (2016)

Balsara & Kim (2016)



Relativistic Jet Propagation
Jet to ambient density ratio = 0.01 
Mach number: 6

Balsara & Kim (2016)



Recent Works



Jet simulation

β = 1/2, a = 0.9β = 1/2, a = 0.0β = ∞, a = 0.0

Kim et al. in preparation



Accretion Disk around BH and Launching of Jets

Kim et al. (2017)



Three dimensional simulation

Preliminary result using KISTI Nurion with 28,000 cpus



Pulsation of Rapidly Rotating Neutron Star

Kim et al. in preparation



Self-Gravitating Disk around NS

Kim et al. (2024)



Adaptive Mesh Refinement (AMR)

Credit: Chombo webpage 



Shocktube with AMR



Vortex interacting with shock



Kelvin-Helmholtz Instability



Comparison: Advection



Relativistic Ray-tracing with GPU acceleration


