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1 Perturbations

1.1 Definition

We can understand perturbations in general relativity intuitively by introducing 5-dimensional manifold F which is foliated
by a one-parameter family of perturbed spacetime (Mϵ, g (ϵ)) where ϵ is a perturbation parameter and g (ϵ) is metric of Mϵ.
To discuss difference between two quantities live in background and perturbed spacetime, we need a one-parameter group of
diffeomorphism ϕϵ : M0 → Mϵ which maps points in M0 to points in Mϵ. Then, the perturbed quantity of a geometrical
quantity Q with left superscript ϵ is defined by

Qϵ ≡ ϕ∗
−ϵQ (ϵ) , (1)

where ϕ∗
−ϵ is the push-forward (or pull-back) through ϕ−ϵ (or ϕϵ). Its Taylor expansion is given by

Qϵ = Q+ ϵQ̇+
1

2
ϵ2Q̈+O

(
ϵ3
)
, (2)

where Q̇ and Q̈ is the first and second order derivative with respect to ϵ, respectively. From eq. (1), we identify that

Q̇ = LV Q, (3)

Q̈ = LV LV Q, (4)

where V is the generator of ϕϵ as

V (f) ≡ lim
ϵ→0

1

ϵ
(f ◦ ϕϵ − f) , (5)

for an arbitrary scalar field f .

1.2 Gauges

Notice that there are infinite ways to choose diffeomorphism ϕϵ. It corresponds to the gauge freedom of perturbations in
general relativity. The gauge transformation of Q̇ between two different gauges, ϕϵ and ϕ′

ϵ, becomes

LV ′Q− LV Q = LξQ, (6)

where V and V ′ are generators of ϕϵ and ϕ′
ϵ, respectively, and ξ ≡ V ′ − V . Moreover, ξ is tangent to M0 because

ξ (ϵ) = V ′ (ϵ)− V (ϵ) = 1− 1 = 0, (7)

where ϵ is understood scalar field on F . Hence, we can evaluate LξQ on M0 which menas

[LξQ] (0) = Lξ(0) [Q (0)] . (8)

Q̇ is gauge invariant if the above vanishes for all ξ. This is possible only when Q (0) is zero, a constant scalar, or constructed
by Kronecker delta with constant coefficients. This approach was first introduced in [Stewart and Walker(1974)] and reviewed
in [Stewart(1990)].

1.3 Metric and Levi-Civita Tensor

The perturbed metric is expanded into

gϵ ab = gab + ϵhab +O
(
ϵ2
)
, (9)
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where h ≡ LV g. The perturbation of identity endormorphism δ vanishes because

v̇a = LV

(
δabv

b
)
= δ̇abv

b + δab v̇
b, (10)

0 = δ̇abv
b (11)

for any vector v. Then, the perturbation of inverse metric becomes LV g
ab = −hab because

0 = δ̇ab = gbcLV g
ac + gachbc, (12)

LV g
ab = −gacgbdhcd = −hab. (13)

1.4 Levi-Civita Tensor

The normalization condition of Levi-Civita tensor,

−4! = ϵabcdϵ
abcd (14)

is perturbed by

0 = LV

(
gaegbfgcggdhϵabcdϵefgh

)
(15)

= 2ϵabcdϵ̇abcd − 4habϵacdeϵ
cde

b (16)

= 2ϵabcdϵ̇abcd + 4!habgab (17)

Then, we get

ϵ̇abcd =
1

2
he

eϵabcd. (18)

1.5 Covariant Derivatives

Let us consider a operation ∇ϵ defined by
∇ϵ ≡ ϕ∗

−ϵ∇ϕ∗
ϵ , (19)

where ∇ is the Levi-Civita connection associated with the spacetime metric g. In fact, this operation is also the Levi-Civita
connection associated with the perturbed metric gϵ = ϕ∗

−ϵg as shown by

∇ϵ gϵ = ϕ∗
−ϵ∇ϕ∗

ϵϕ
∗
−ϵg = 0 (20)

∇ϵ [a ∇ϵ b]f = ϕ∗
−ϵ∇[a∇b]ϕ

∗
ϵf = 0 (21)

where f is an arbitrary function. Then, the difference between covariant derivatives of a tensor T with respect to ∇ϵ and ∇
is written by

( ∇ϵ c −∇c)T
a1···ak

b1···bl =

k∑
i=1

T a1···d···ak

b1···bl Cϵ ai

dc −
l∑

i=1

T a1···ak

b1···d···bl Cϵ d
bic , (22)

as in [Wald(1984)] where

Cϵ a
bc =

1

2
gϵ ad (∇c gϵ bd +∇b gϵ cd −∇d gϵ bc) , (23)

where gϵ ab is the inverse of gϵ ab .

Defining Ċ and ∇̇ as

Ċa
bc ≡ lim

ϵ→0

1

ϵ
( Cϵ a

bc − 0) , (24)

∇̇ ≡ lim
ϵ→0

1

ϵ
( ∇ϵ −∇) , (25)

we get

Ċa
bc =

1

2
gad (∇chbd +∇bhcd −∇dhbc) (26)

∇̇cT
a1···ak

b1···bl =

k∑
i=1

T a1···d···ak

b1···bl Ċ
ai

dc −
l∑

i=1

T a1···ak

b1···d···bl Ċ
d
bic . (27)

As a result, the dot of ∇T , where T is a tensor of any type, becomes

LV ∇T = lim
ϵ→0

1

ϵ

[
ϕ∗
−ϵ∇T −∇T

]
(28)

= lim
ϵ→0

1

ϵ
[ ∇ϵ ( Tϵ − T ) + ( ∇ϵ −∇)T ] (29)

= ∇Ṫ + ∇̇T. (30)
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1.6 Riemann Curvatures

Riemann curvature tensor of the Levi-Civita connection ∇ associated with the spacetime metric g is given by

Ra
bcdv

b = 2∇[c∇d]v
a (31)

where v is an arbitrary vector. Let us consider dot of the above along a gauge V which is

LV

(
Ra

bcdv
b
)
= 2∇[c∇d]v̇

a + 2∇[c∇̇d]v
a + 2∇̇[c∇d]v

a (32)

= Ra
bcdv̇

b + 2vb∇[cĊ
a
d]b . (33)

By the Leibniz’ rule of Lie derivatives, we get

Ṙa
bcd = 2∇[cĊ

a
d]b (34)

= ∇[c∇d]h
a
b +∇[c∇|b|h

a
d] −∇[c∇ahd]b (35)

=
1

2
(he

bR
a
ecd − ha

eR
e
bcd) +∇[c∇|b|h

a
d] −∇[c∇ahd]b (36)

1.7 Einstein Equation

The dot of Ricci tensor Rab ≡ Rc
acb and scalar R ≡ Ra

a are given by

Ṙab = δdcṘ
c
adb + δ̇dcR

c
adb (37)

= ∇c∇(ahb)c −
1

2
∇c∇chab −

1

2
∇b∇ah

c
c (38)

= ∇(a∇ch b)c −
1

2
∇c∇chab −

1

2
∇b∇ah

c
c −R c d

a b hcd +Rc
(a h b)c (39)

Ṙ = gabṘab − habRab (40)

= ∇b∇ah
ab −∇b∇bh

a
a − habRab (41)

For the Einstein tensor, we get

Ġab = Ṙab −
1

2
habR− 1

2
gabṘ (42)

= −1

2
∇c∇chab +∇c∇(ah

c
b) − 1

2
gab∇d∇ch

cd − 1

2
∇b∇ah

c
c +

1

2
gab∇d∇dh

c
c +

1

2
gabh

cdRcd −
1

2
habR. (43)

Spacetime is governed by the Einstein equation given by

Gab = 8πTab, (44)

where T is the stress-energy. Its linear perturbation is given by

Ġab = 8πṪab. (45)

1.8 Geodesics

Let us consider a dust given by
Tab = ρuaub (46)

where ρ is energy-density and u is 4-velocity satisfying

−1 = u · u. (47)

The stress-energy satisfies the perturbation of contracted Bianchi identity,

∇bTab = 0, (48)

by the Einstein equation. Their perturbation is given by

Ṫab = ρ̇uaub − ρhacu
cub − ρuahbcu

c + ρu̇aub + ρuau̇b (49)

0 = habu
aub + 2uau̇

a (50)

0 = ∇bṪab − Ċc b
a Tcb − Ċc b

b Tac − hbc∇cTab (51)

0 = ∇bT̈ab − 2Ċc b
a Ṫcb − 2Ċc b

b Ṫac − C̈c b
a Tcb − C̈c b

b Tac + hbdĊc
adTcb + hbdĊc

bdTac

−
(
jbc − 2hachb

c

)
∇cTab − hbc

(
∇cṪab − Ċc b

a Tcb − Ċc b
b Tac

)
(52)
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At background we assume that

ρϵ = ϵρ+ ϵ2σ +O
(
ϵ3
)
, (53)

uϵ a = ua + ϵva +O
(
ϵ2
)
, (54)

Tϵ ab = ϵ (ρuaub) + ϵ2 {σuaub + ρ (vaub + uavb)}+O
(
ϵ3
)

(55)

Then, the perturbation of contracted Bianchi identity in the leading-order becomes

0 = ∇b (ρuaub) (56)

= ρub∇bua + ua∇b (ρub) . (57)

Noticing ub∇bua is spatial with respect to u, we obtain

0 = ub∇bu
a, (58)

0 = ∇a (ρua) , (59)

where the first is the equation of geodesics and the second is the law of conservation. In the next-to-leading-order we get

v · u = −1

2
habu

aub (60)

0 = ∇b {σuaub + ρ (vaub + uavb)} −
1

2

(
∇ah

bc +∇bh c
a −∇ch b

a

)
(ρucub)−

1

2

(
∇bh

bc +∇bh c
b −∇chb

b

)
(ρuauc)

− 1

2
hbc∇c (ρuaub) (61)

= ua∇b (σub) + ρub∇bva +∇b (ρuavb)−
1

2
ρubuc∇ah

bc − 1

2

(
∇bh

bc +∇bh c
b −∇chb

b

)
(ρuauc)

− 1

2
hbc∇c (ρuaub) (62)

2 Gravitational Waves

In this lecture, we only consider perturbations with Minkowski background.

2.1 Minkowski Background

The Riemann tensor of Minkowski spacetime vanishes:

Ra
bcd = 0. (63)

Thus, the Levi-Civita connection for any tensors is commute:

∇[a∇b] = 0. (64)

Assuming Tϵ = O
(
ϵ2
)
, we get the perturbed Einstein equation in the next-to-leading-order as

0 = −1

2
∇c∇chab +∇c∇(ah

c
b) − 1

2
gab∇d∇ch

cd − 1

2
∇b∇ah

c
c +

1

2
gab∇d∇dh

c
c (65)

Defining h̄ as

h̄ab ≡ hab −
1

2
gabh

c
c, (66)

we get

0 = −1

2
∇c∇ch̄ab +∇(a∇ch̄ b)c −

1

2
gab∇c∇dh̄cd. (67)

2.2 Lorenz Gauge

We impose a gauge condition, so-called Lorenz gauge, given by

∇bh̄ab = 0. (68)

Then, the perturbed Einstein equation becomes the wave equation:

0 = ∇c∇ch̄ab. (69)
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Note that eq. (68) does not determine gauge uniquely. We can generate a set of gauges satisfying the Lorenz gauge condition
by the gauge transformation given in eq. (6):

h′
ab = hab + Lξgab, (70)

where h and h′ are metric perturbations in given gauge and new gauge, respectively, and ξ is a vector. Their relation in h̄
becomes

h̄′
ab = h̄ab +∇aξb +∇bξa − gab∇cξc. (71)

If both gauges satisfy the Lorenz gauge condition, we obtain

∇b∇bξ
a = 0. (72)

2.3 Wave Solution

Let us consider a wave solution of the metric perturbation with the wave equation in eq. (69) given by

hab =

∫
N
d3N (k) h̃ab (k) e

iP (;k), (73)

where N ≡ {k : k · k = 0}− {0} is the set of null vectors, h̃ d3N is the infinitesimal amplitude, and P is the phase such that
ka = ∇aP . N is decomposed into the future-directed subset N+ and the past-directed subset N−, respectively. Because h
is real, N+ and N− have one-to-one correspondence given by

h̃ab (−k) = h̃∗
ab (k) . (74)

2.4 Traceless Gauge

Let us investigate possibilities of the further gauge restriction given by

ha
a = 0, (75)

which is the traceless gauge. For the above, we have to transform gauge with ξ satisfying

0 = ha
a + 2∇aξ

a, (76)

where h is a metric perturbation in given gauge. Because we only consider gauges satisfying the Lorenz gauge condition, ξ
is the solution of eq. (72). Thus, it has form of

ξa =

∫
N
d3N (k) ξ̃a (k) eiP (;k). (77)

Then, eq. (76) becomes

0 =

∫
N
d3N

(
h̃a

a + 2ikaξ̃
a
)
eiP . (78)

Choices of ξ̃ to vanish the integrand of the above for all k ∈ N realize the traceless gauge.
In summary, our gauge choice have been

0 = ∇bhab, (79)

0 = ha
a, (80)

which implies

0 = kbh̃ab (k) , (81)

0 = h̃a
a (k) , (82)

for all k ∈ N . Among gauges satisfying the above condition, the gauge transformations are given by ξ satisfying

0 = ∇aξ
a, (83)

which implies

kaξ̃
a (k) = 0, (84)

for all k ∈ N .
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2.5 Riemann Tensor

From eq. (36), we obtain

Ṙab
cd = −2∇[a∇[ch

b]
d] (85)

=
1

2

∫
N
d3N 4k[ak[ch̃

b]
d]e

iP . (86)

Note that the perturbation of Reimann tensor is gauge-invariant because its background value vanishes.

2.6 Introducing Observer

Let us consider the Eulerian observer with 4-velocity n of a globally inertial coordinate system {t, x⃗} in Minkowski background
spacetime. The 3+1 decomposition of a wave vector k ∈ N is given by

ka = ω (n+ κ) , (87)

where ω = −n ·k is the frequency and κ = k/ω−n is the spatial unit vector of propagation. We define a projection operator
P onto a vector subspace orthogonal to n and κ as

P a
b = δab + nanb − κaκb. (88)

Then, it is idempotent,

P a
b = P a

cP
c
b , (89)

and its trace is

P a
a = 2. (90)

Let us give an additional gauge condition as

habn
b = 0. (91)

The the gauge conditions we have chosen including the above is so-called the transverse-traceless (TT) gauge condition. All
gauge conditions we impose are summarized in

0 = nbh̃ab (k) , (92)

0 = κbh̃ab (k) , (93)

0 = h̃a
a (k) , (94)

for all k ∈ N .
Let us show that the TT gauge condition determines a gauge uniquely. We orthogonally decompose ξ̃ for traceless gauges

into

ξ̃a = α̃na + β̃κa + X̃a, (95)

where X̃a = P a
b ξ̃

b. Because eq. (84) implies α̃ = β̃, we get form of

ξ̃a = γ̃ka + X̃a. (96)

For two gauges satisfying the TT gauge condition have a transformation with ξ̃ satisfying

0 = i
(
kaξ̃b + ξ̃akb

)
nb (97)

= i
{
kaγ̃ (k · n) +

(
γ̃ka + X̃a

)
(k · n)

}
(98)

= i
(
2γ̃ka + X̃a

)
(k · n) . (99)

It implies that ξ̃ vanishes and both gauges are indentical.
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2.7 Polarization of Amplitude

We consider a set of rank (0, 2) tensors T satisfying eqs. (92) to (94). It has projection operator Λ given by

Λab
cd ≡ P a

(cP
b
d) − 1

2
P abPcd. (100)

A right-handed orthonormal basis
{
eA : A = +,×

}
for T has properties,

eA · eB = δAB , (101)

eAabe
B
cdg

acϵbdefn
eκf = εAB (102)

where δ is the Kronecker delta, ε is the Levi-Civita symbol for two dimension, ϵ is the spacetime Levi-Civita tensor, and · is
the inner product for T defined by

x · y = gacgbdxabycd, (103)

for x, y ∈ T . The collection of right-handed orthonormal bases are parametrized by ϑ with the relation,

e+ab (ϑ) = cos (2ϑ) e+ab (0) + sin (2ϑ) e×ab (0) , (104)

e×ab (ϑ) = − sin (2ϑ) e+ab (0) + cos (2ϑ) e×ab (0) , (105)

where
{
eA (0)

}
is a fiducial basis.

Let us consider a phase adjustment of h̃ by α as

h̃ab =
{
ℜ
(
h̃abe

−iα
)
+ iℑ

(
h̃abe

−iα
)}

eiα, (106)

such that the real part and imaginary part are orthogonal to each other. Note that α for the orthogonalization is not unique.
So, we introduce a “standard” process for the orthogonalization given by

−π/2 ≤ α =
1

2
Arg

(
h̃ · h̃

)
≤ π/2, (107)

h̃+ =

√
ℜ
(
h̃e−iα

)
· ℜ

(
h̃e−iα

)
> 0, (108)

e+ =
1

h̃+

ℜ
(
h̃e−iα

)
∈ T . (109)

Then, e× is uniquely determined by the right-handedness of the basis
{
eA : A = +,×

}
for T and

h̃× = iℑ
(
h̃e−iα

)
· e×. (110)

Finally, we get the form

h̃ab = h̃Ae
A
abe

iα. (111)

This is an analogy to the form for elliptically polarized electromagnetic waves given in [Landau and Lifshitz(1975)]. Intro-
ducing unit eigenvectors x and y for e+ with positive and negative eiginvalues, respectively, we get

e+ab =
1√
2
(xaxb − yayb) , (112)

e×ab =
1√
2
(xayb + yaxb) . (113)

Exercise: Show that
∣∣∣h̃+

∣∣∣ > ∣∣∣h̃×

∣∣∣ in the above process.

2.8 Changing Observer

A metric perturbation in the traceless gauge has decomposition as

hab = Ak̂ak̂b +Bak̂b + k̂aBb + Cab, (114)

where

k̂a = na + κa (115)

A = habn
anb, (116)

Ba = −hacn
aP c

b , (117)

Cab = hcdP
c
aP

d
b . (118)

7



We find that the metric perturbation in the TT gauge is only taking C.
In another observer with 4-velocity n′, we have

hab = A′k̂′ak̂
′
b +B′

ak̂
′
b + k̂′aB

′
b + C′

ab. (119)

Equating the above and eq. (114), we get

C′
ab = CcdP

′c
aP

′d
b , (120)

where P ′ is the projection operator orthogonal to n′ and κ′ as defined in eq. (88). It is the transformation rule for metric
perturbations in the TT gauge.

2.9 Perturbation of Observer

We consider observers that follow dusts with the 4-velocity field given by

uϵ a = na + ϵva +O
(
ϵ2
)
. (121)

From eqs. (60) and (62), we obtain

0 = v · n, (122)

0 = na

{
nb∇bσ +∇b (ρvb)

}
+ ρnb∇bva, (123)

in the TT gauge. If σ = 0 and v = 0 before arrival of GWs, v = 0 is maintained even though GW is passing. So we set

v = 0, (124)

over the spacetime and the observerse are fixed on the globally inertial coordinate system {t, x⃗}.

3 Detection of GWs

3.1 Geometrical Optics

Let us consider an electromagnetic field whose 4-potential can be given by

Aa = ℜ
[{

Ãa + ω−1B̃a +O
(
ω−2

)}
ei{ωQ+R+O(ω−1)}

]
, (125)

such that la ≡ ∇aQ is future-directed, ma = ∇aR, and −n · l ∼ 1/R for an observer n and the curvature radius R. Through,

∇bAa = ℜ
[{

ilb

(
Ãa + ω−1B̃a

)
+∇b

(
Ãa + ω−1B̃a

)
+O

(
ω−1

)}
ei{ωQ+R+O(ω−1)}

]
(126)

= ℜ
[{

iωlbÃa + imbÃa + ilbB̃a +∇bÃa +O
(
ω−1

)}
ei{ωQ+R+O(ω−1)}

]
, (127)

∇aAa = ℜ
[{

iω
(
l · Ã

)
+ i

(
m · Ã

)
+ i

(
l · B̃

)
+∇aÃa +O

(
ω−1

)}
ei{ωQ+R+O(ω−1)}

]
, (128)

∇c∇bAa = ℜ
[{

i (ωlc +mc)
(
iωlbÃa + imbÃa + ilbB̃a +∇bÃa

)
+∇c

(
iωlbÃa + imbÃa + ilbB̃a +∇bÃa

)
+O (1)} ei{ωQ+R+O(ω−1)}

]
(129)

= ℜ
[{

−ω2lclbÃa + ω
(
−mblcÃa − lblcB̃a + ilc∇bÃa −mclbÃa + i∇c

(
lbÃa

))
+O (1)

}
ei{ωQ+R+O(ω−1)}

]
, (130)

∇b∇bAa = ℜ
[{

−ω2 (l · l) Ãa + ω
(
−2 (m · l) Ãa − (l · l) B̃a + 2ilb∇bÃa + iÃa∇bl

b
)
+O (1)

}
ei{ωQ+R+O(ω−1)}

]
, (131)

the Maxwell equation without charge,

∇b∇bAa = Rb
aAb, (132)

∇aAa = 0, (133)

gives

0 = l · l (134)

in the leading-order of ω and

0 = l · Ã, (135)

0 = 2lb∇bÃa + Ãa∇bl
b + 2i (m · l) Ãa (136)
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in the next-to-leading-order. Let us ignore m. (why?) Rewriting results, we obtain the evolution equations along l as

la∇aQ = l · l = 0, (137)

lb∇bl
a = gaclb∇b∇cQ (138)

= gaclb∇c∇bQ (139)

=
1

2
gac∇c (l · l) (140)

= 0, (141)

in the leading-order and

0 = ∇b

(
Ã2lb

)
, (142)

0 = lb∇bf̃a, (143)

0 = l · f̃ , (144)

in the next-to-leading-order where Ã ≡
√

Ã · Ã∗, f̃a ≡ Ãa/Ã, the first equation is conservation of ray number, the second
equation is the parallel transport of polarization, and the third equation is the transverse condition of polarization.

3.2 Perturbation of Rays

Perturbation of la = gab∇bQ is given by

l̇a = −hablb +∇aQ̇. (145)

Perturbation of the evolution of Q becomes

0 = l̇a∇aQ+ la∇aQ̇ (146)

=
(
−hablb +∇aQ̇

)
la + la∇aQ̇, (147)

la∇aQ̇ =
1

2
habl

alb. (148)

Perturbation of α ≡ −na∇aQ is given by

α̇ = −ṅa∇aQ− na∇aQ̇. (149)

At background, we assume that α = 1 and la = na + λa where λ is a spatial unit vector. Perturbed quantities are given
by

Qϵ = Q+ ϵS +O
(
ϵ2
)
, (150)

αϵ = 1 + ϵβ +O
(
ϵ2
)

(151)

Then, the equation for S,

la∇aS =
1

2

∫
N
d3N (k) h̃abl

albeiP (152)

solves

S = Sp + Sh (153)

where

Sp =

∫
N
d3N S̃peiP , (154)

S̃p = −i
1

2 (l · k)
h̃abl

alb, (155)

(156)

and Sh satisfies

∇aS
h = γ (na + λa) . (157)
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Then,

β = −na∇aS (158)

= −1

2

∫
N
d3N n · k

l · k
h̃abl

albeiP + γ (159)

We give boundary condition at the plane P that is the congruence of emitters as

[β]P = 0. (160)

Then,

γ =
1

2

∫
N
d3N n · k

l · k
h̃abl

albeiP
h

, (161)

where

∇aP
h = ka − (k · l)λa. (162)

As a result,

β = −na∇aS (163)

= −1

2

∫
N
d3N n · k

l · k
h̃abl

alb
(
1− ei∆

)
eiP , (164)

where ∆ ≡ P h − P . Note that

P h (t, x⃗) = P (t− x⃗ · λ, x⃗− (x⃗ · λ)λ) (165)

is retarded phase from P.

3.3 Beyond Geometrical Optics

Please refer [Park and Kim(2021), Park(2022a), Park(2022b)].
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