A radically brief introduction to General relativistic hydrodynamics

김윤수 (Caltech)

Jul 28 2022, @ NRGW Summer School, Busan

SIMULATING EXTREME SPACETIMES

https://www.black-holes.org/

https://github.com/sxs-collaboration/WelcomeToSXS

University of New Hampshire

Contents

- What is numerical relativity?
- Numerical relativity with matter
 - What equations do we solve?
- What kinds of physics are involved?
- What are issues & challenges?

3

Numerical relativity (NR)

Binary black hole merger

Video credit : SXS collaboration (<u>https://www.youtube.com/watch?v=c-2XluNFgD0</u>)

Binary neutron star merger

Video credit : Max Planck Institute for Gravitational Physics (https://www.youtube.com/watch?v=7jMw_EpLuSs)

t = 31.948 ms

Modern NR codes

Code	Open Source	Catalog	Formulation	Hydro	Beyond GR
AMSS-NCKU [43–46]	Yes	No	BSSN/Z4c	No	Yes
BAM [47–49]	No	[18]	BSSN/Z4c	Yes	No
BAMPS [50, 51]	No	No	GHG	Yes	No
COFFEE[52, 53]	Yes	No	GCFE	No	Yes
Dendro-GR [54-56]	Yes	No	BSSN/CCZ4	No	Yes
Einstein Toolkit [57, 58]	Yes	No	BSSN/Z4c	Yes	Yes
*Canuda [59–62]	Yes	No	BSSN	No	Yes
*IllinoisGRMHD [63]	Yes	No	BSSN	Yes	No
*LazEv [37, 64]	No	[65–68]	BSSN+CCZ4	No	No
*Lean [69, 70]	Partially	No	BSSN	No	Yes
*MAYA [71]	No	[71]	BSSN	No	Yes
*NRPy+ [72]	Yes	No	BSSN	Yes	No
*SphericalNR [73, 74]	No	No	spherical BSSN	Yes	No
*THC [75–77]	Yes	[18]	BSSN/Z4c	Yes	No
ExaHyPE [78]	Yes	No	CCZ4	Yes	No
FIL[79]	No	No	BSSN/Z4c/CCZ4	Yes	No
FUKA [80, 81]	Yes	No	XCTS	Yes	No
GR-Athena++ [82]	Yes	No	Z4c	Yes	No
GRChombo [83–85]	Yes	No	BSSN+CCZ4	No	Yes
HAD [86–88]	No	No	CCZ4	Yes	Yes
Illinois GRMHD [89, 90]	No	Yes	BSSN	Yes	No
MANGA/NRPy+ [91]	Partially	No	BSSN	Yes	No
MHDuet [92, 93]	No	No	CCZ4	Yes	Yes
SACRA-MPI [94]	No		BSSN+Z4c	Yes	No
SpEC [95, 96]	No	[96, 97]	GHG	Yes	Yes
SpECTRE [98, 99]	Yes	No	GHG	Yes	No
SPHINCS_BSSN [100]		No	BSSN	SPH	No

Numerical relativity with matter

- Spacetime tells matter how to move :
- $\nabla_{\mu} T^{\mu\nu} = 0$
- Matter tells spacetime how to curve :
- $G_{\mu\nu} = 8\pi T_{\mu\nu}$

- + hydrodynamics (GRHD)
- + magnetic fields (GRMHD)
- + radiation (GRRMHD)

non-vacuum compact binaries (NS-BH & NS-NS)

Foucart+2013

relativistic stars

Ciolfi+2011

accretion disk

Video credit : Illinois Physics (<u>https://www.youtube.com/watch?v=pjJIA4AjHiQ</u>)

► jets

Video credit : Ore Gottlieb (https://www.oregottlieb.com/videos.html)

begin with Newtonian hydrodynamics :

Physical quantities describing the fluid at (\mathbf{x}, t)

- mass density ρ
- ► velocity V
- energy density (~temperature) ϵ

*pressure from $P = P(\rho, \epsilon)$: equations of state (EOS)

e.g. Classical ideal gas $P = \frac{2}{3}\epsilon \quad (= nk_BT)$ e.g. Electron degeneracy $P = \frac{(3\pi^2)^{2/3}\hbar^2}{5m_e^{8/3}}\rho^{5/3}$

2

Which physical laws do we have?

- mass conservation
- $\mathbf{F} = m\mathbf{a}$ (~momentum conservation)
- energy conservation

note) convective derivative $\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla$

makes equations *nonlinear*

Can we write Newtonian hydro equations into this form? Yes

$$\mathbf{U} = \begin{bmatrix} \rho \\ \rho v^{j} \\ \rho \epsilon + \frac{1}{2} \rho v^{2} \end{bmatrix}, \qquad \mathbf{F}^{i} = \begin{bmatrix} \rho v^{i} \\ \rho v^{i} v^{j} + P \delta^{ij} \\ (\rho \epsilon + \frac{1}{2} \rho v^{2} + P) v^{i} \end{bmatrix}$$

conserved variables U vs primitive variables $\{\rho, v^i, \epsilon\}$

nuity
$$\frac{\partial \rho_c}{\partial t} + \nabla \cdot \mathbf{J} = 0$$

Important for correct shock speeds

Advantageous when solving numerically (Lax & Wendroff 1960, Hou & LeFloch 1994)

this is a good form !

$$\mathbf{S} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$$

GR hydrodynamics

 $T^{\mu\nu} = \rho h u^{\mu} u^{\nu} + P g^{\mu\nu}$ Physical quantities describing the fluid at (\mathbf{x}, t) :

- conservation of mass
- conservation of energy and momentum

$$\begin{array}{l} \nabla_{\mu}(\rho u^{\mu}) = 0 \\ \nabla_{\mu}T^{\mu\nu} = 0 \end{array} \begin{array}{l} \end{array} \begin{array}{l} & & \\ \end{array} \end{array} \begin{array}{l} & & \\ \end{array} \begin{array}{l} & & \\ \end{array} \end{array}$$

• Valencia formulation (Marti+1991; Banyuls+1997)

stress-energy tensor (ideal fluid)

$$\mathbf{S} = \alpha \sqrt{\gamma} \begin{bmatrix} 0 \\ T^{\mu\nu} g_{\nu\sigma} \Gamma^{\sigma}_{\mu j} \\ T^{\mu 0} \partial_{\mu} \alpha - \alpha T^{\mu\nu} \Gamma^{0}_{\mu \nu} \end{bmatrix}$$

used by current NR codes

See analogies:

Newtonian hydro **GR** hydro $\mathbf{U} = \sqrt{\gamma} \begin{vmatrix} \rho W \\ \rho h W^2 v_j \\ \rho h W^2 - P - \rho W \end{vmatrix}$ $\mathbf{U} = \begin{bmatrix} \rho v^j \\ \rho \epsilon + \frac{1}{2} \rho v^2 \end{bmatrix}$ $\mathbf{F}^{i} = \begin{vmatrix} \rho v^{i} \\ \rho v^{i} v^{j} + P \delta^{ij} \\ (\rho \epsilon + \frac{1}{2} \rho v^{2} + P) v^{i} \end{vmatrix} \qquad \mathbf{F}^{i} = \alpha \begin{vmatrix} \tilde{D} \tilde{v}^{i} \\ \tilde{S}_{j} \tilde{v}^{i} + \sqrt{\gamma} P \delta_{j}^{i} \\ \tilde{\tau} \tilde{v}^{i} + \sqrt{\gamma} P v^{i} \end{vmatrix}$ $\mathbf{S} = \alpha \sqrt{\gamma} \begin{vmatrix} 0 \\ T^{\mu\nu} g_{\nu\sigma} \Gamma^{\sigma}_{\mu j} \\ T^{\mu 0} \partial_{\mu} \alpha - \alpha T^{\mu\nu} \Gamma^{0}_{\mu \nu} \end{vmatrix} \longrightarrow$ $\mathbf{S} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$

> * flat space : $\alpha = 1$, $\beta^i = 0$, $\sqrt{\gamma} = 1$, $\Gamma^{\sigma}_{\mu\nu} = 0$ * non-relativistic : $v^j \ll 1$, $\rho \gg \epsilon, P$

More physics !

Properties of dense matter

• Uncertainties in $P(\rho, T)$ inside neutron stars

Özel & Freire 2016

More physics !

Properties of dense matter

- BH-NS / NS-NS merger as a probe of nuclear physics
- Constrain EOSs from merger detections

Foucart+2016

Bernuzzi+2015

More physics !

Magnetic field

- GRMHD: $T^{\mu\nu} = T^{\mu\nu}_{matter} + T^{\mu\nu}_{EM}$
- introduces (even) higher nonlinearity
- ✓ capturing instabilities & turbulence

Neutrino effects

- cooling and heating of matter
- evolution of matter composition (e.g. nucleosynthesis)
- ✓ expensive to compute full equations

Sądowski & Narayan 2016

Woosley & Janka 2005

Challenges

Shocks & Discontinuities

e.g. shockwave, stellar surface

• Gibbs phenomena may lead to unphysical states

Toro 2009

Toro 2009

Challenges

C2P recovery

evolution::dg::Actions::ApplyBoundaryCorrectionsToTimeDerivative < Metavars>()

evolution::dg::subcell::Actions::TciAndRollback<grmhd::ValenciaDivClean::subcell::TciOnDgGrid<grmhd::ValenciaDivClean::PrimitiveRecoverySchemes::KastaunEtAl>>0

profile of a GRMHD run in SpECTRE

Take-aways

- Hydrodynamics is hard matter makes everything complex...
- Rich in physics & astrophysical applications more difficulties, more fun
- One of the most challenging yet interesting multiphysics problem stay tuned :)