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https://mriquestions.com/uploads/3/4/5/7/34572113/_6902752_orig.gif
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e.g. Infinite square well (QM)

iℏ
∂
∂t

Ψ(x, t) = Ĥ(x, t)Ψ(x, t),

ϕk(x) =
2
L

sin
kπx
L

Ψ(0, t) = Ψ(L, t) = 0

⟨ϕi, ϕj⟩ = ∫
L

0
ϕi(x)ϕj(x)dx = δij

introduce basis wave functions

Ψ(x, t) =
∞

∑
k=0

akϕk(x)then expand wavefunction:
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time evolution of expansion coefficients!

iℏ
dai

dt
=

∞

∑
k=0

⟨ϕi, Ĥϕk⟩ak

d
dt

a1
a2
⋮

= −
i
ℏ

H11 H12 ⋯
H21 H22 ⋯
⋮ ⋮ ⋱

a1
a2
⋮

iℏ
∞

∑
k=0

dak

dt
ϕk =

∞

∑
k=0

ak(Ĥϕk)

Take product with a basis ϕi(x)
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How accurate is  compared to  ?ΨN Ψ

ΨN =
N

∑
k=0

akϕk(x)In practice, series is truncated at finite  : k



• Different choices of basis and methods of computing coefficients

Spectral method
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f(x) → fN(x) =
N

∑
n=0

anϕn(x)

• A truncated expansion with smooth basis functions ϕn(x)

• Finite difference : approximate the equation 
Spectral method : approximate the solution

Basis functions 
- Fourier basis

- Orthogonal polynomials (Chebyshev, 

Legendre)

- Nodal basis

How to compute  s? 
- Tau method

- Galerkin method

- Collocation (or pseudospectral) method

an

Here we introduce collocation method with nodal approximation



Modal vs Nodal
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fN(x) =
N

∑
n=0

fnln(x)

nodal representation

function values at each grid points 
(physical space)

fN(x) =
N

∑
n=0

cnPn(x)

modal representation

lk(x) = 1, (x = xk)
= 0, otherwise

components of each modes 
(spectral space)
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c0 + c1

+ c2 + c3

+ c4 + ⋯

yN(x) =

Modal representation
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y0 + y1

+ y2 + y3

+ y4 + ⋯

yN(x) =

Nodal representation
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f(x) = sin(2x + 1)

f(x) = Θ(0.05 − x)

fall-off rate of modal coefficients shows how well the approximation is working



Collocation method
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• How to choose collocation points  ?{xi}

• Let x ∈ [−1, 1]

recall — in FD method, we used uniform (equidistance) grid

Answer : they need to be more clustered near endpoints
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f(x) =
1

1 + 25x2

N = 7

N = 13

N = 19

Uniformly spaced grids Gauss-Legendre points

• Interpolation of 

Runge phenomenon



Collocation points

13

• For practical applications we use special classes of points

e.g. Gauss-Legendre points
 are -th root of a Legendre polynomial xi i PN(x)

Image and table credit : https://en.wikipedia.org/wiki/Gauss%E2%80%93Legendre_quadrature
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Number of grid points = 5



Collocation method
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• Example : scalar advection system
∂u
∂t

+
∂u
∂x

= 0

N=16 N=40
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• Error goes ~ exp(-N) recall) error goes  for k-th order finite difference method∼ 1/Nk
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Pros

Cons
Spectral methods work well for smooth solutions. 
Discontinuities like shocks are bad — don’t even try spectral methods 

- Numerical Recipes

Exponential accuracy 
(Error goes )∼ e−N

recall) Gibbs phenomena
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in numerical relativity

For vacuum spactime, solutions are always smooth

For hydro simulations, we want…


• spectral accuracy where solution is smooth


• ability to handle shocks and surfaces.

Buchman+2012

e.g. Spectral Einstein Code (SpEC)



Discontinuous Galerkin method
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We cover nodal discontinuous Galerkin method

• nodal — working in physical space

• Galerkin — weak form

• discontinuous — ?
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∂u
∂t

+
∂F
∂x

= S• Consider a conservation law :

∫
1

−1 [ ∂u
∂t

+
∂F
∂x

− S] lj(x) dx = 0

F ≈
N

∑
k=0

Fklk(x)u ≈
N

∑
k=0

uklk(x) S ≈
N

∑
k=0

Sklk(x)

take product with a basis  : lj weak formulation

∫ (∂xF)lj → Flj
+1

−1
− ∫ Fl′ jintegration by parts

Apply nodal approximation : 
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·uj = −
1
wj

Flj
x=1

x=−1
−

N

∑
n=0

D̂jnFn + Sj

….


….


 
( left as an exercise for the reader )

•   are pre-computed quantities


• note the “boundary” flux term  and 

D̂, wj

F(+1) F(−1)

Computed time derivative : 
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• Divide computational domain into cells


• perform spectral expansion in each cells

Discontinuous Galerkin method

·uj = −
1
wj

Flj
x=1

x=−1
−

N

∑
n=0

D̂jnFn + Sj

·uj = −
1
wj

Flj
x=1

x=−1
−

N

∑
n=0

D̂jnFn + Sj
·uj = −

1
wj

Flj
x=1

x=−1
−

N

∑
n=0

D̂jnFn + Sj
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Riemann solver gives an appropriate value F*(UL, UR)

Question: which value of  should we use at the boundary — from left? right? F

·uj = −
1
wj

Flj
x=1

x=−1
−

N

∑
n=0

D̂jnFn + Sj
?

Each cell “communicates” with neighbors with the numerical flux

numerical flux
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• Example : 1D scalar wave  
∂2u
∂t2

=
∂2u
∂x2
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• Example : 1D scalar wave  
∂2u
∂t2

=
∂2u
∂x2
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DG evolutionHigh resolution finite difference

e.g. Sod problem (Newtonian hydrodynamics)

Shock capturing for DG

• Resolving sub-cell scale shock is still difficult
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Shock capturing for DG

Deppe+ 2109.12033; 2109.11645
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Example) Kelvin-Helmholtz instability
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Mass density Lorentz factor

Example) GRMHD blast wave
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Δt ≤
c

d(2N + 1)
Δx
λmax

• Suited for parallelization  
- nearest-neighbor communication

• Spectral accuracy for each cells

• Smaller (tighter) CFL limit than finite difference

• Discontinuities are resolved at cell interfaces

Discontinuous Galerkin method
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SpECTRE code
https://github.com/sxs-collaboration/spectre

• Evolves first-order hyperbolic systems using DG method


• Open source


• Task-based parallelism: Charm++ (https://charm.cs.illinois.edu/)


• Elliptic solver (Vu+2022)


• Generalized Harmonic (GR) + Valencia (GRMHD) formulation

https://github.com/sxs-collaboration/spectre
https://charm.cs.illinois.edu/

