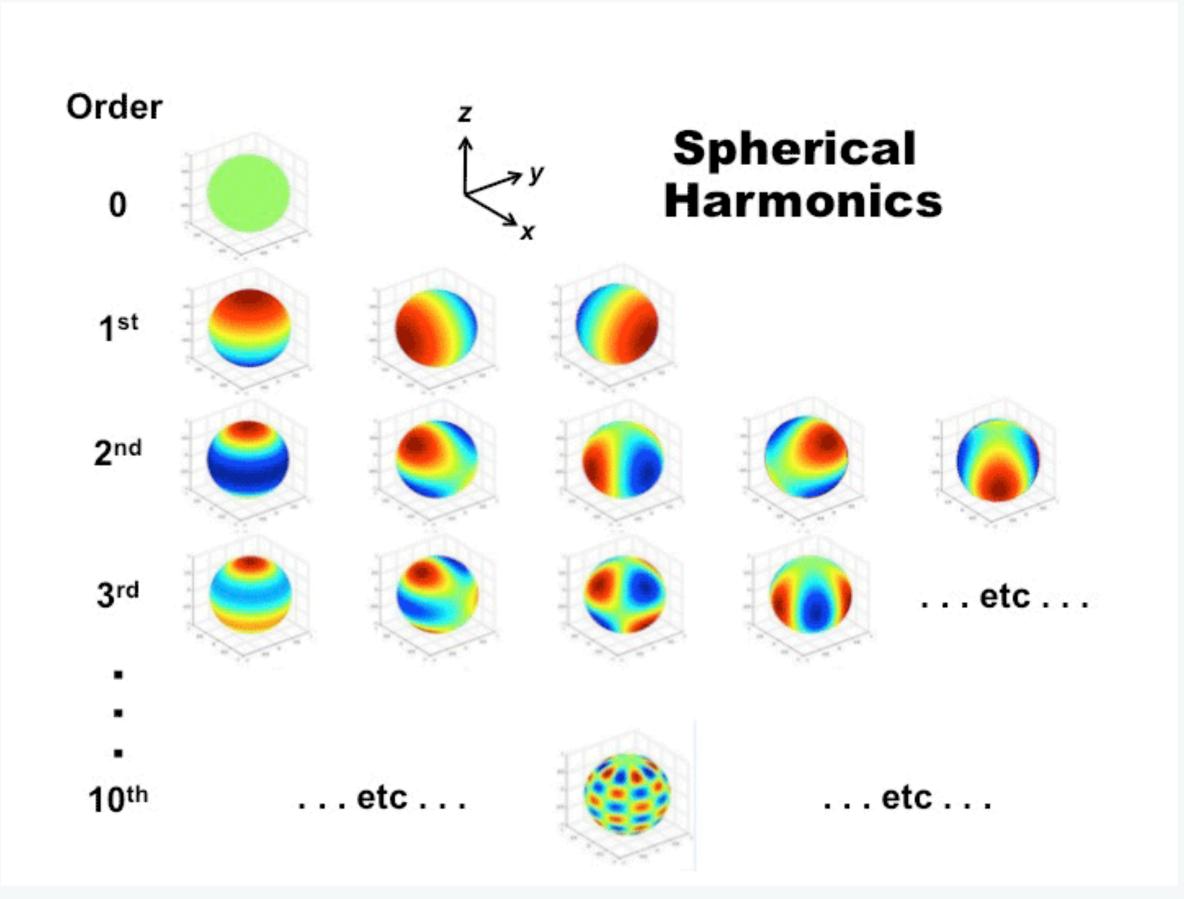
Introduction to the Discontinuous Galerkin method

김윤수 (Caltech)

Jul 28 2022, @ NRGW Summer School, Busan



https://mriquestions.com/uploads/3/4/5/7/34572113/_6902752_orig.gif

e.g. Infinite square well (QM)

$$i\hbar \frac{\partial}{\partial t} \Psi(x,t) = \hat{H}(x,t) \Psi(x,t), \qquad \Psi(0,t) = \Psi(L,t) = 0$$

introduce basis wave functions

$$\phi_k(x) = \sqrt{\frac{2}{L}} \sin \frac{k\pi x}{L} \qquad \langle \phi_i, \phi_j \rangle = \int_0^L \phi_i(x) \phi_j(x) dx =$$

then expand wavefunction:
$$\Psi(x, t) = \sum_{k=0}^{\infty} a_k \phi_k(x)$$

$$i\hbar\sum_{k=0}^{\infty}\frac{da_k}{dt}\phi_k = \sum_{k=0}^{\infty}a_k(\hat{H}\phi_k)$$

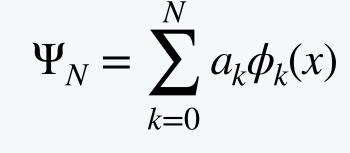
$$i\hbar \frac{da_i}{dt} = \sum_{k=0}^{\infty} \langle \phi_i, \hat{H}\phi_k \rangle a_k$$

Take product with a basis $\phi_i(x)$

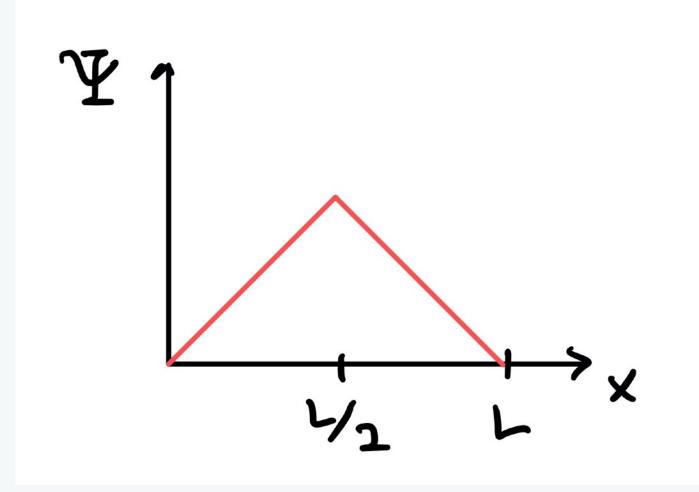
$$\frac{d}{dt} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \end{bmatrix} = -\frac{i}{\hbar} \begin{bmatrix} H_{11} & H_{12} & \cdots \\ H_{21} & H_{22} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \end{bmatrix}$$
time e

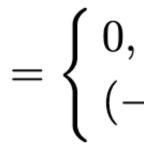
evolution of expansion coefficients!

In practice, series is truncated at finite k:



How accurate is Ψ_N compared to Ψ ?





$= \begin{cases} 0, & n \text{ even,} \\ (-1)^{(n-1)/2} \frac{4\sqrt{6}}{(n\pi)^2}, n \text{ odd.} \end{cases}$

Spectral method

- Finite difference : approximate the equation • Spectral method : approximate the solution
- A truncated expansion with smooth basis functions $\phi_n(x)$

$$f(x) \rightarrow f_N(x) = \sum_{n=0}^N a_n \phi_n(x)$$

Different choices of basis and methods of computing coefficients •

Basis functions

- Fourier basis
- Orthogonal polynomials (Chebyshev, Legendre)

How to compute a_n s?

- Tau method

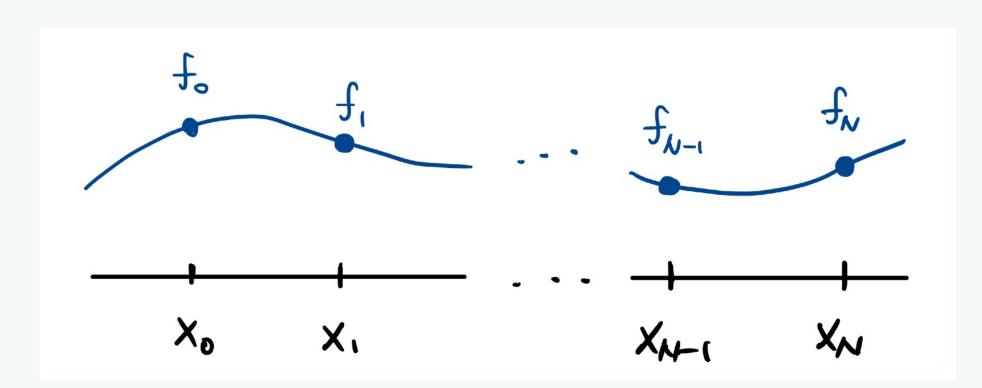
Nodal basis

Here we introduce collocation method with nodal approximation

Galerkin method

Collocation (or pseudospectral) method

Modal vs Nodal



modal representation

$f_N(x) = \sum_{n=1}^{N} c_n P_n(x)$ n=0

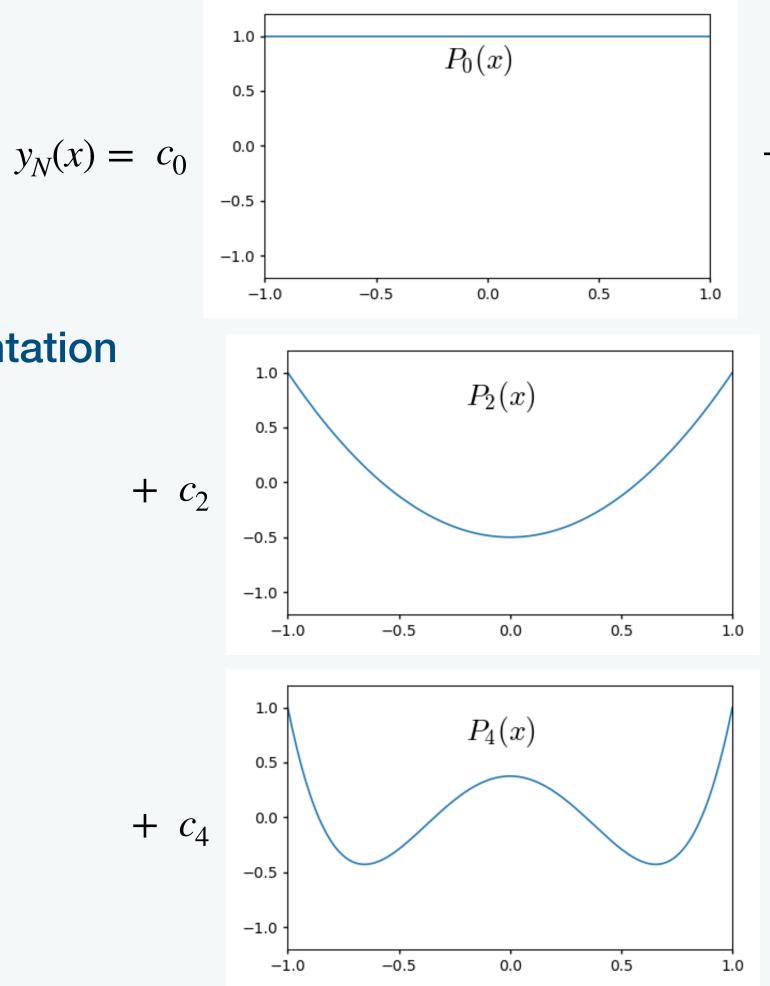
$$f_N(x) =$$

function values at each grid points (physical space)

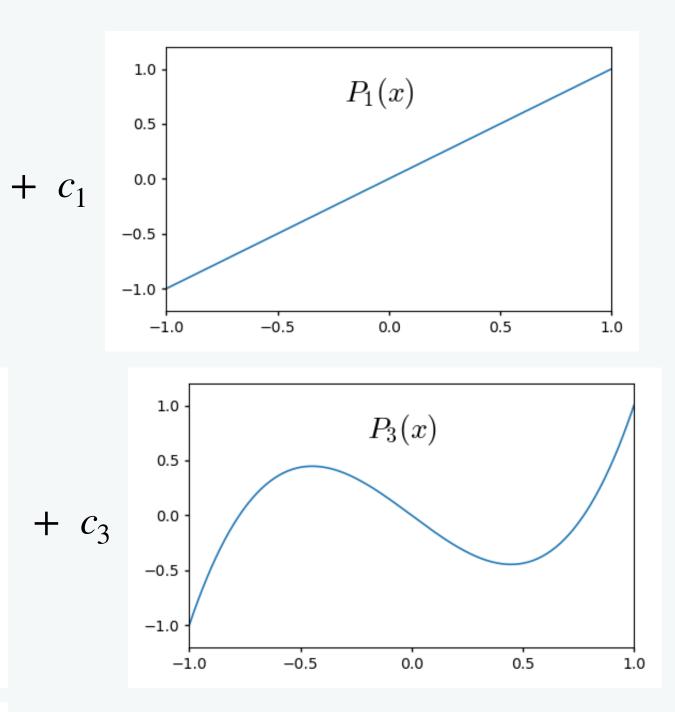
components of each modes (spectral space)

nodal representation

$$\sum_{n=0}^{N} f_n l_n(x) \qquad l_k(x) = 1, \quad (x = x_k) = 0, \quad \text{otherwise}$$

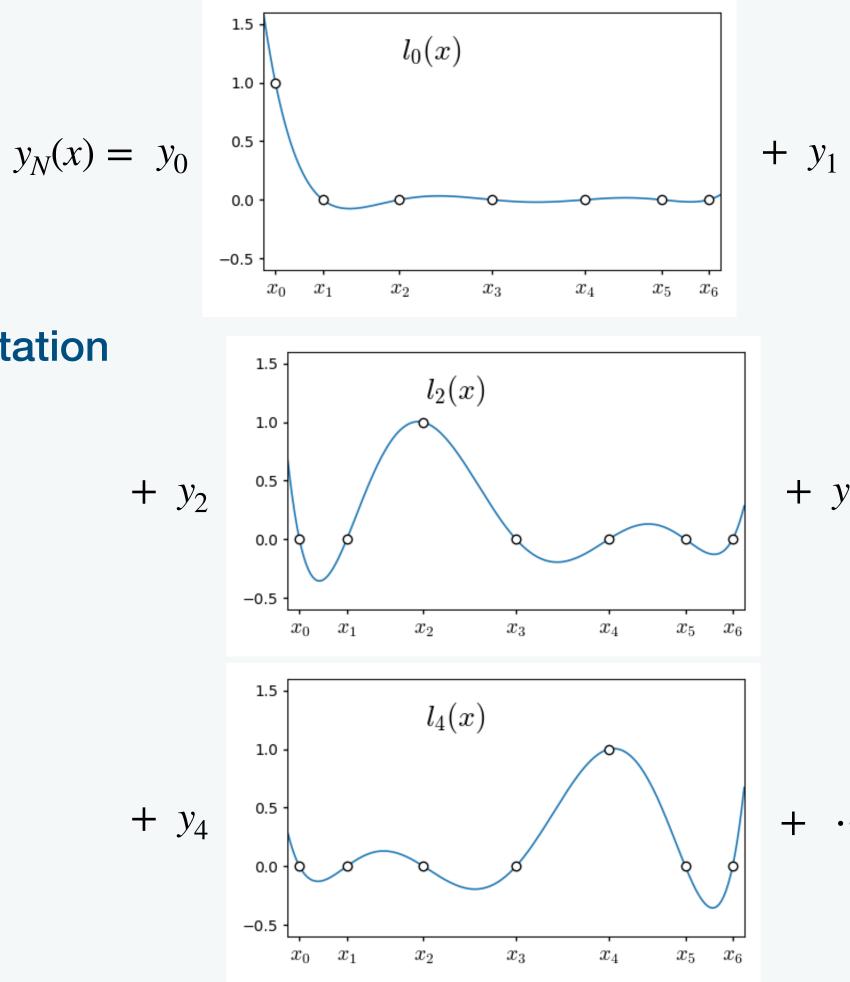


Modal representation

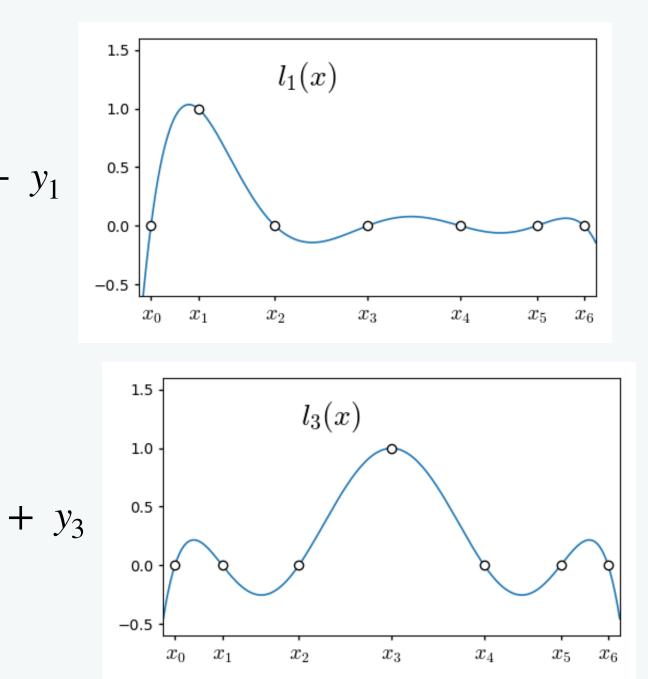


+

• • •

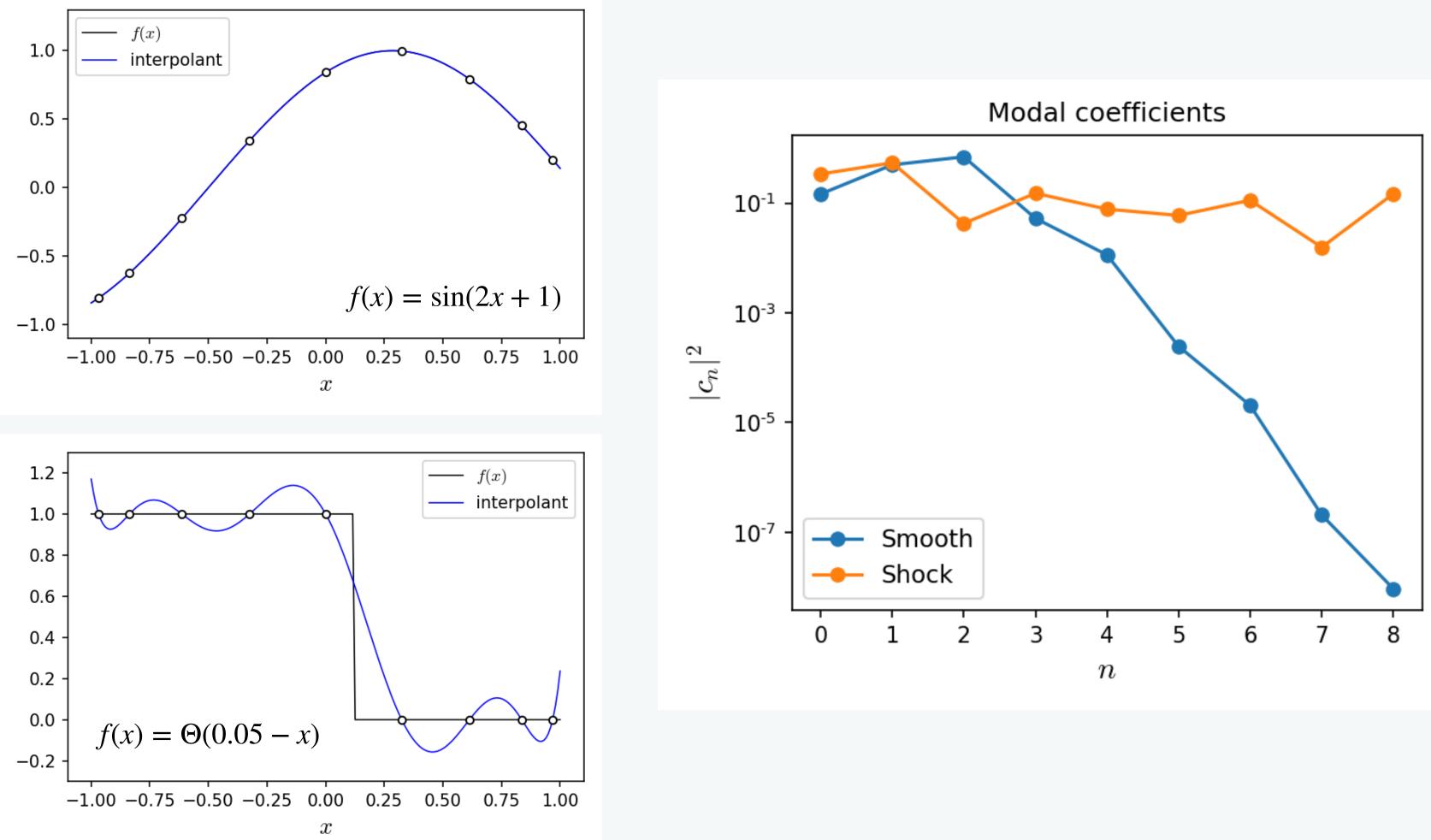


Nodal representation



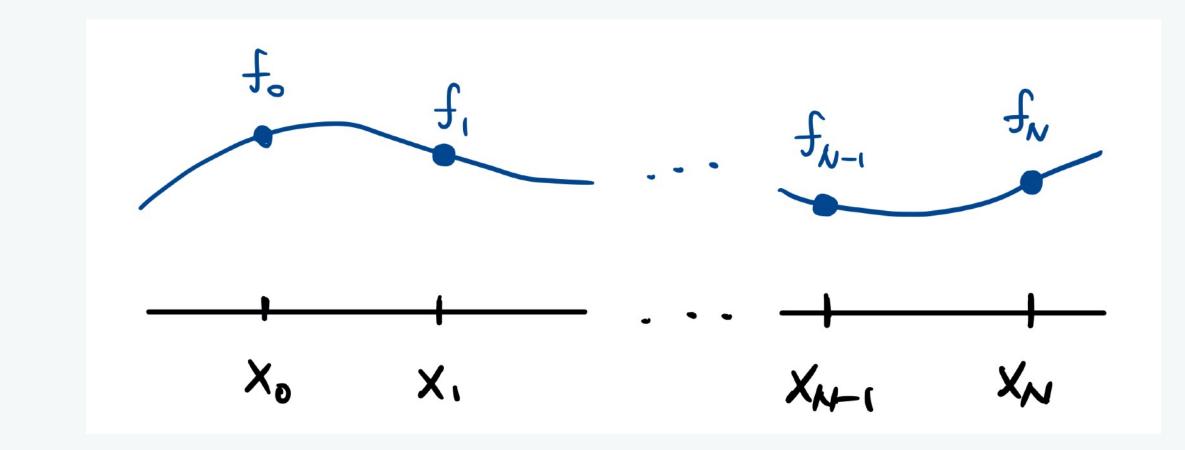
• • •

fall-off rate of modal coefficients shows how well the approximation is working



Collocation method

- Let $x \in [-1, 1]$
- How to choose collocation points $\{x_i\}$?



recall — in FD method, we used uniform (equidistance) grid

Answer : they need to be more clustered near endpoints

Uniformly spaced grids

Runge phenomenon

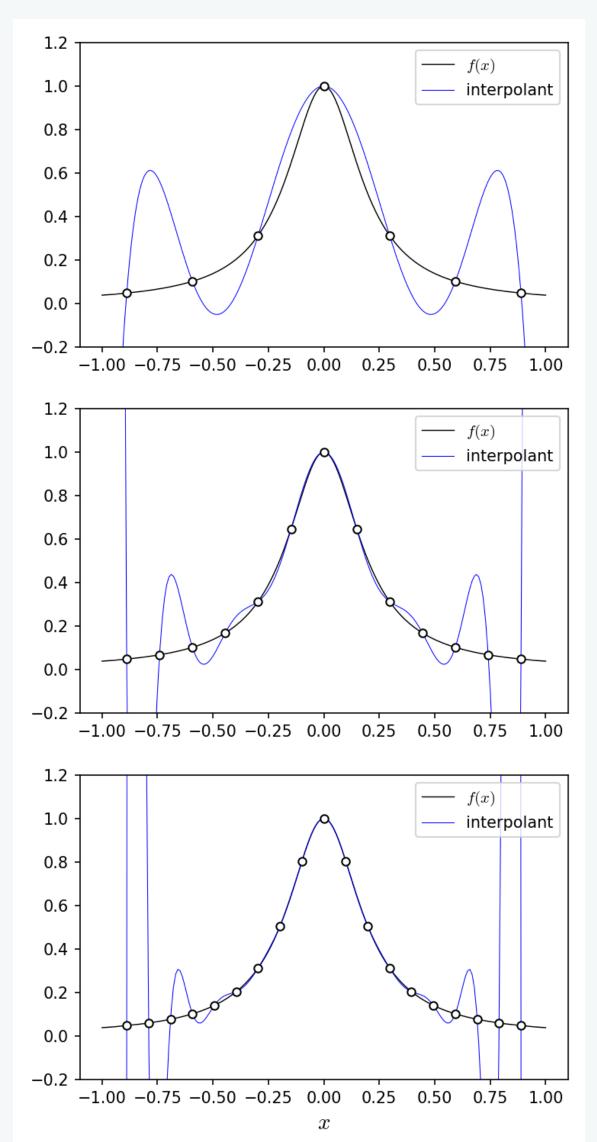
N = 7

Interpolation of

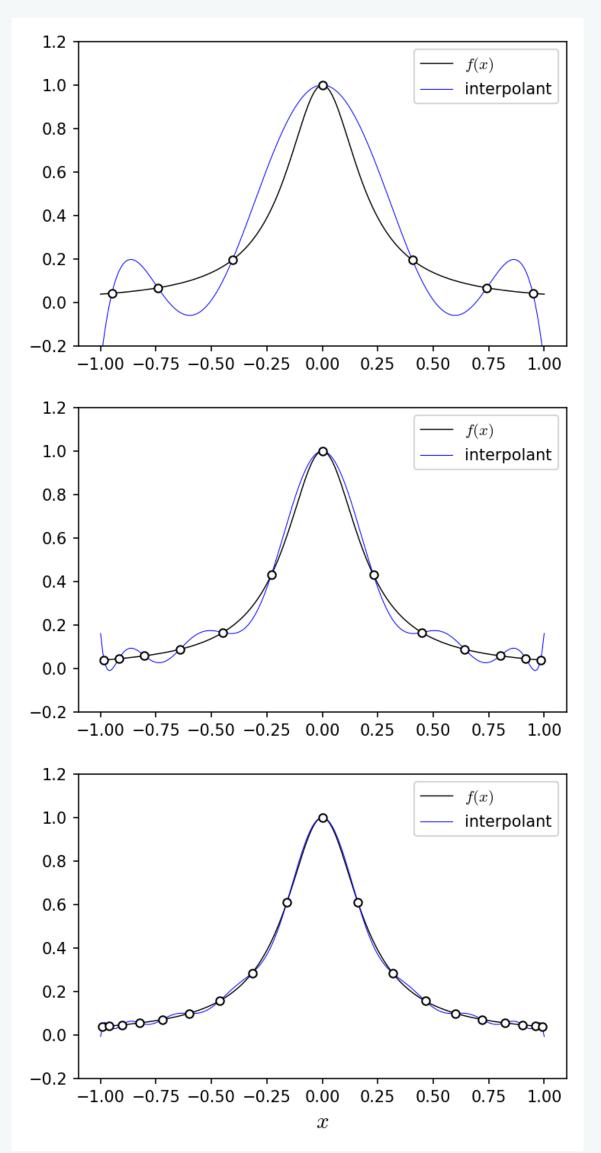
$$f(x) = \frac{1}{1 + 25x^2}$$

N = 13

N = 19



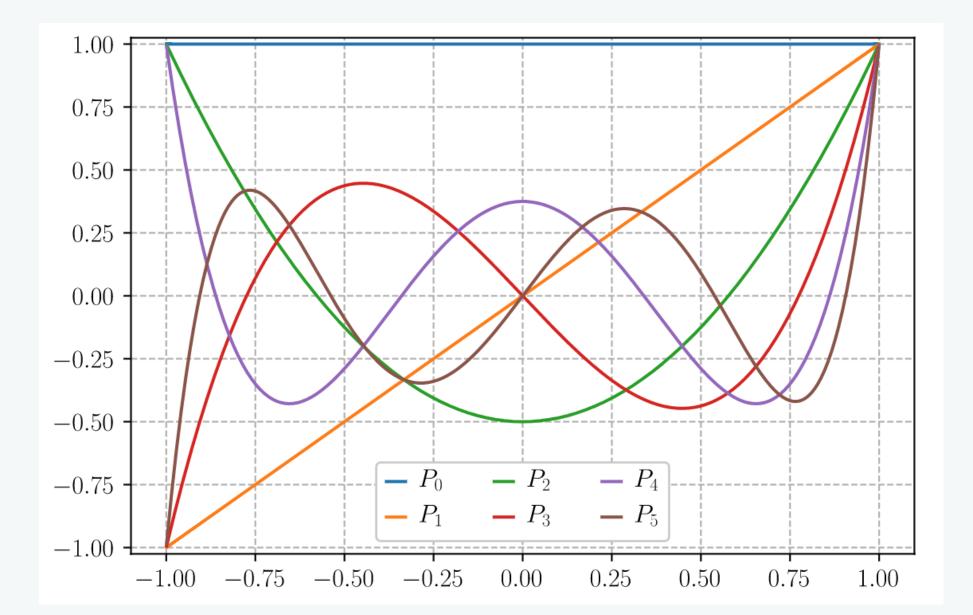
Gauss-Legendre points



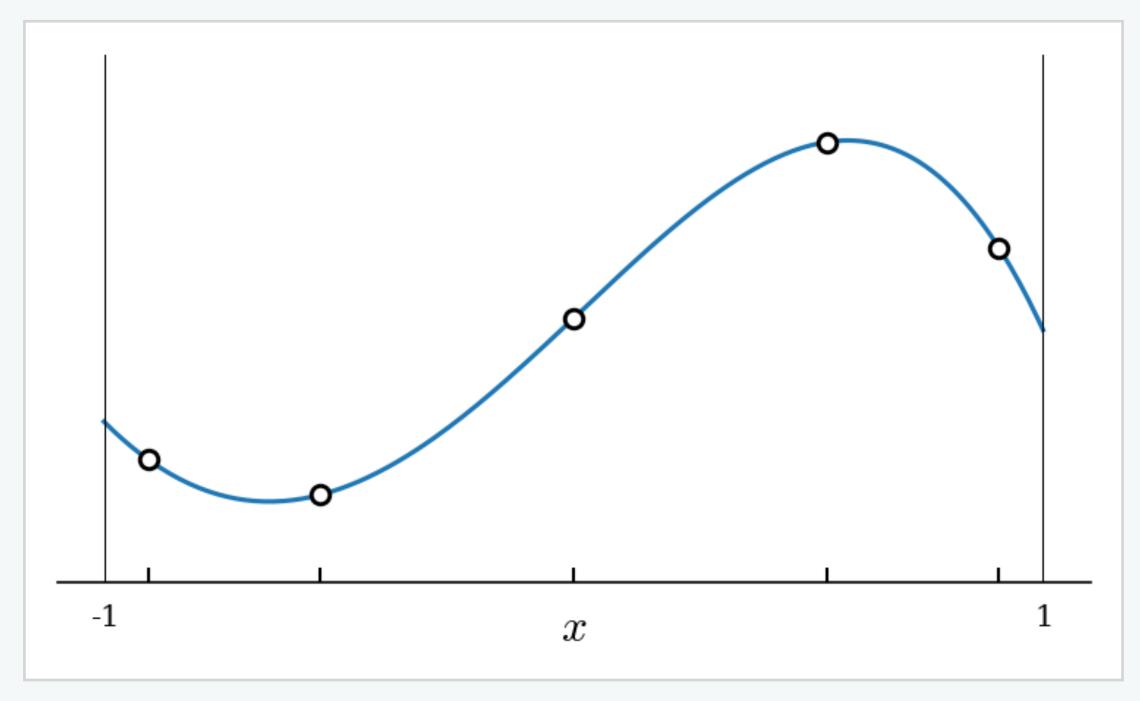
Collocation points

 For practical applications we use special classes of points e.g. Gauss-Legendre points

 x_i are *i*-th root of a Legendre polynomial $P_N(x)$



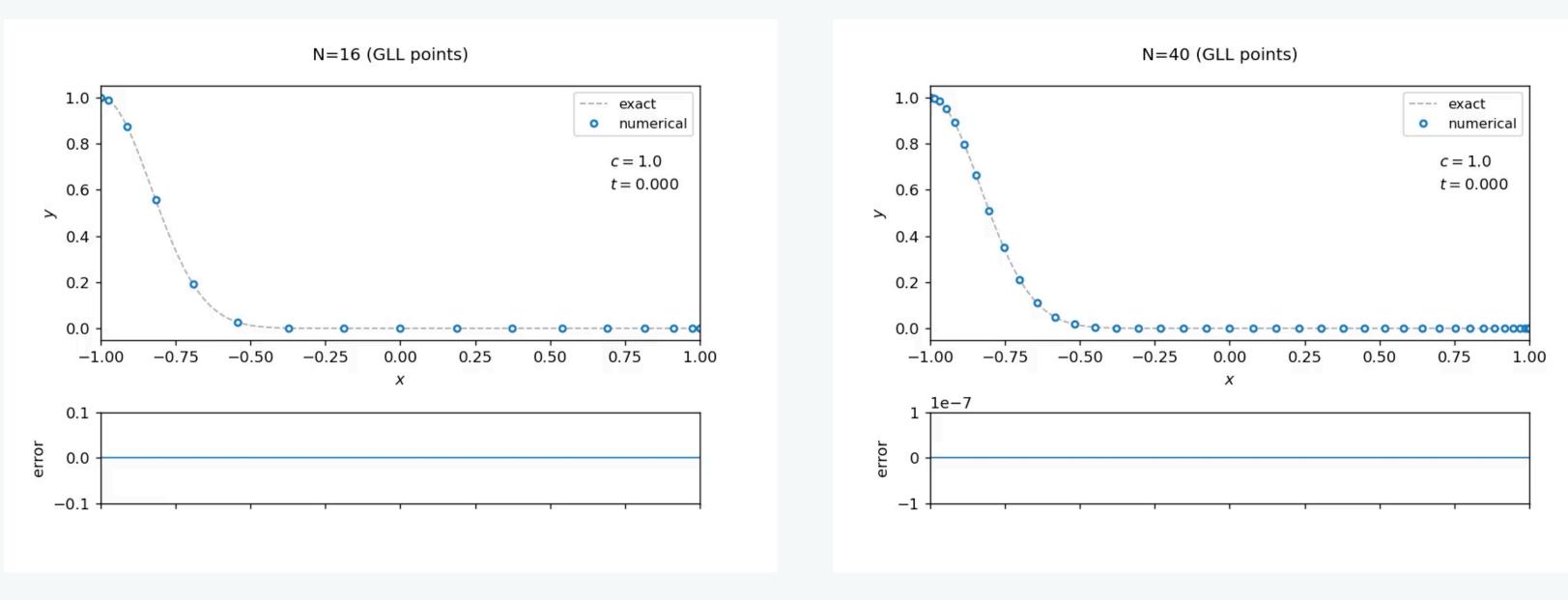
Number of points, <i>n</i>	Points, x_i	
1	0	
2	$\pm rac{1}{\sqrt{3}}$	±0.57735…
3	0	
	$\pm\sqrt{rac{3}{5}}$	±0.774597…
4	$\pm\sqrt{rac{3}{7}-rac{2}{7}\sqrt{rac{6}{5}}}$	±0.339981…
	$\pm\sqrt{rac{3}{7}+rac{2}{7}\sqrt{rac{6}{5}}}$	±0.861136…
5	0	
	$\pmrac{1}{3}\sqrt{5-2\sqrt{rac{10}{7}}}$	±0.538469…
	$\pmrac{1}{3}\sqrt{5+2\sqrt{rac{10}{7}}}$	±0.90618…



Number of grid points = 5

Collocation method

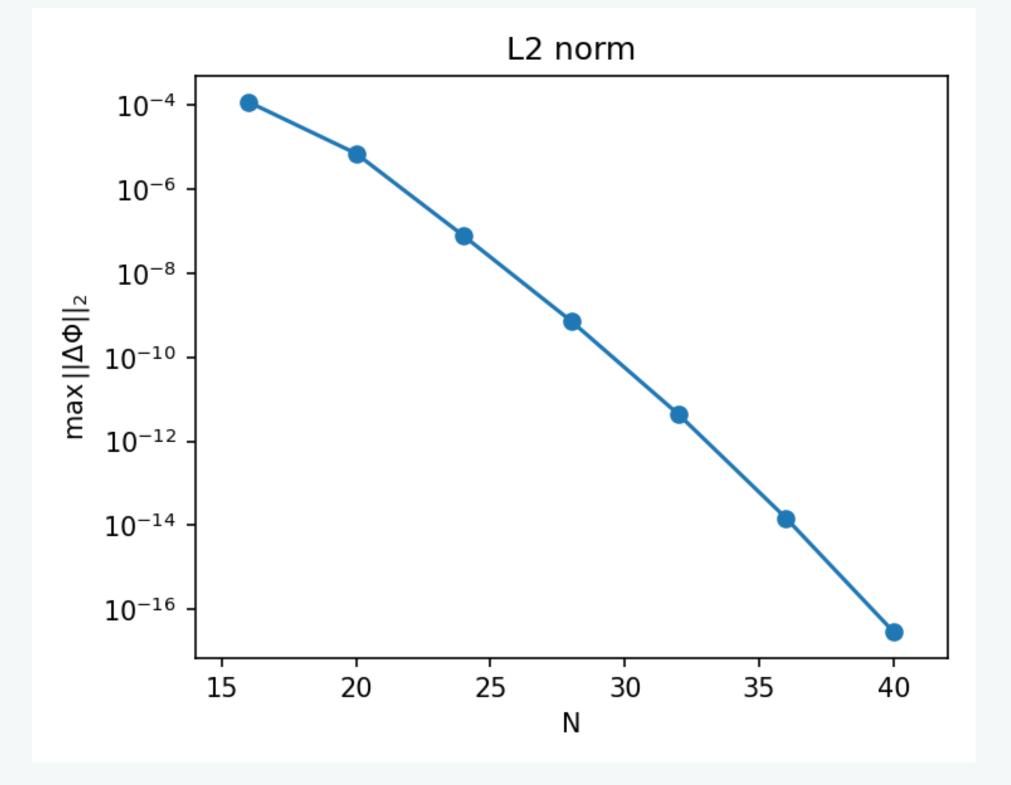
- Example : scalar advection system •
- $\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = 0$



N=16

N=40

• Error goes ~ exp(-N)



ProsExponential accuracy
(Error goes $\sim e^{-N}$)

Cons

Spectral methods work well for smooth solutions. Discontinuities like shocks are bad — don't even try spectral methods

recall) Gibbs phenomena

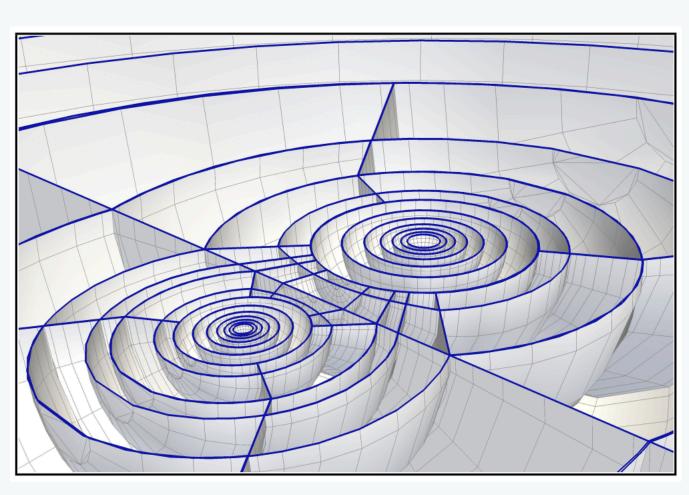
- Numerical Recipes

in numerical relativity

For vacuum spactime, solutions are always smooth e.g. Spectral Einstein Code (SpEC)

For hydro simulations, we want...

- spectral accuracy where solution is smooth
- ability to handle shocks and surfaces.



Buchman+2012

Discontinuous Galerkin method

We cover nodal discontinuous Galerkin method

- *nodal* working in physical space
- Galerkin weak form
- discontinuous ?

Consider a conservation law :
$$\frac{\partial u}{\partial t} + \frac{\partial F}{\partial x} = S$$

take product with a basis l_j : $\int_{-1}^{1} \left[\frac{\partial u}{\partial t} + \frac{\partial F}{\partial x} - S \right] l_j(x) dx = 0$
integration by parts $\int (\partial_x F) l_j \rightarrow F l_j \Big|_{-1}^{+1}$

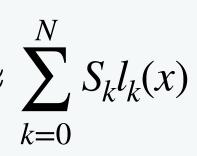
Apply nodal approximation :

ullet

$$u \approx \sum_{k=0}^{N} u_k l_k(x)$$
 $F \approx \sum_{k=0}^{N} F_k l_k(x)$ $S \approx$

0 weak formulation

 $-1 - \int Fl'_j$



- - - - -

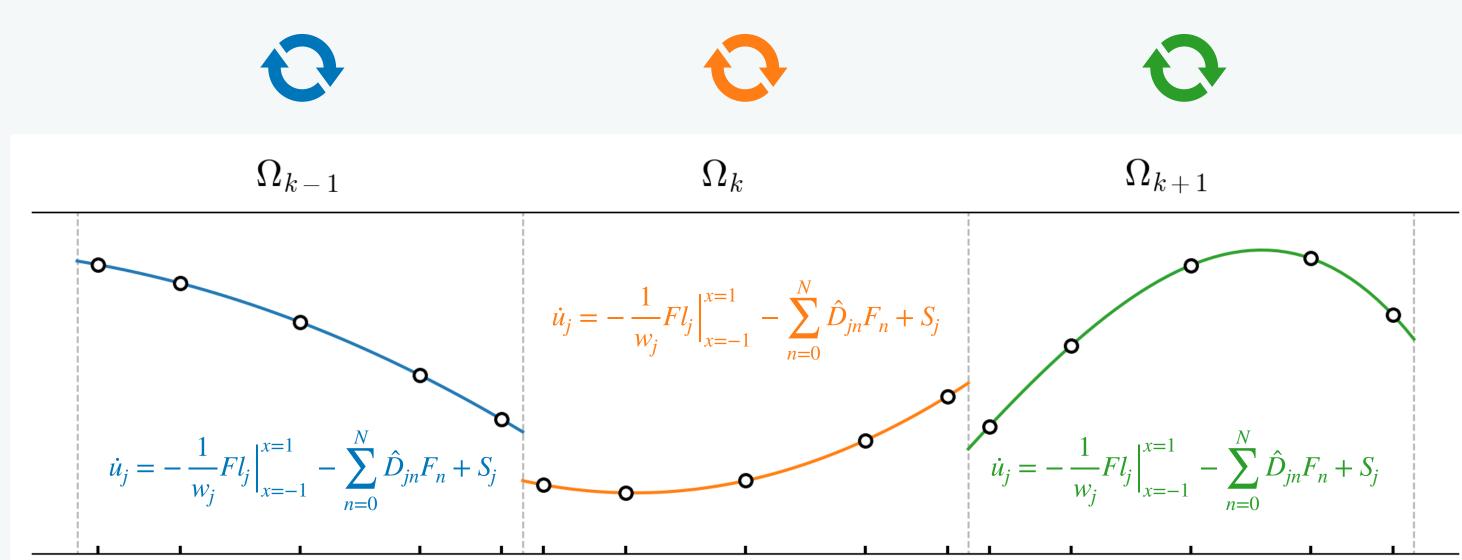
Computed time derivative :

$$\dot{u}_{j} = -\frac{1}{w_{j}}Fl_{j}\Big|_{x=-1}^{x=1} - \sum_{n=0}^{N}$$

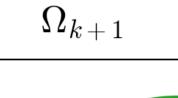
- \hat{D}, w_j are pre-computed quantities
- note the "boundary" flux term F(+1) and F(-1)

 $\hat{D}_{jn}F_n + S_j$

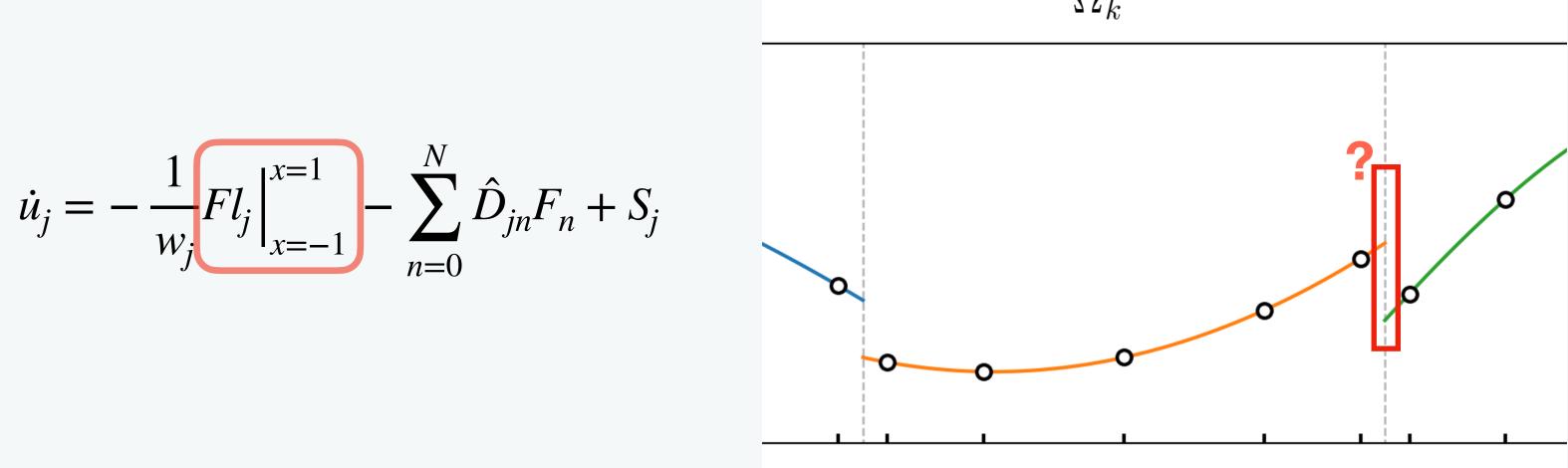
Discontinuous Galerkin method



- Divide computational domain into cells
- perform spectral expansion in each cells •



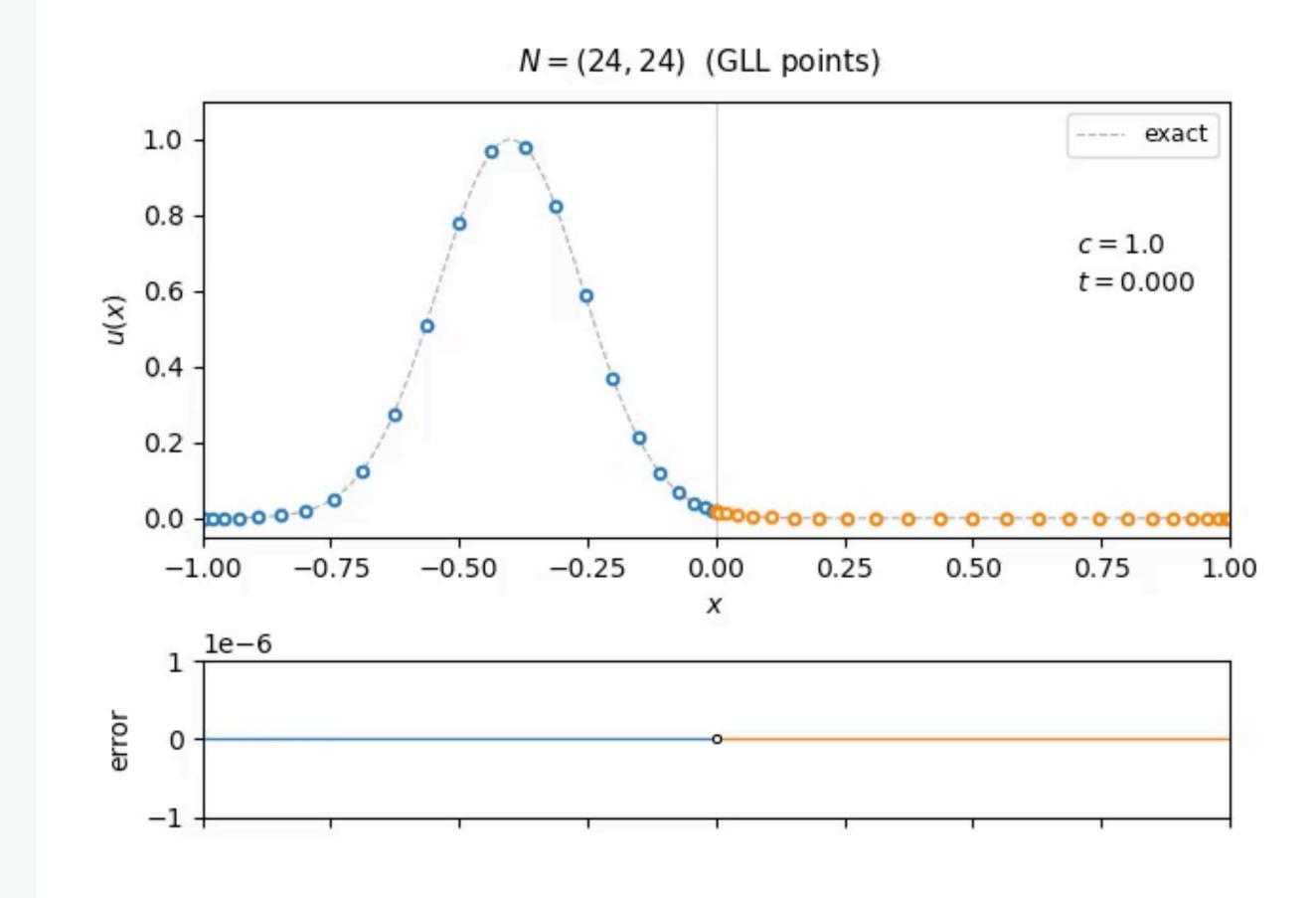
Question: which value of F should we use at the boundary — from left? right?



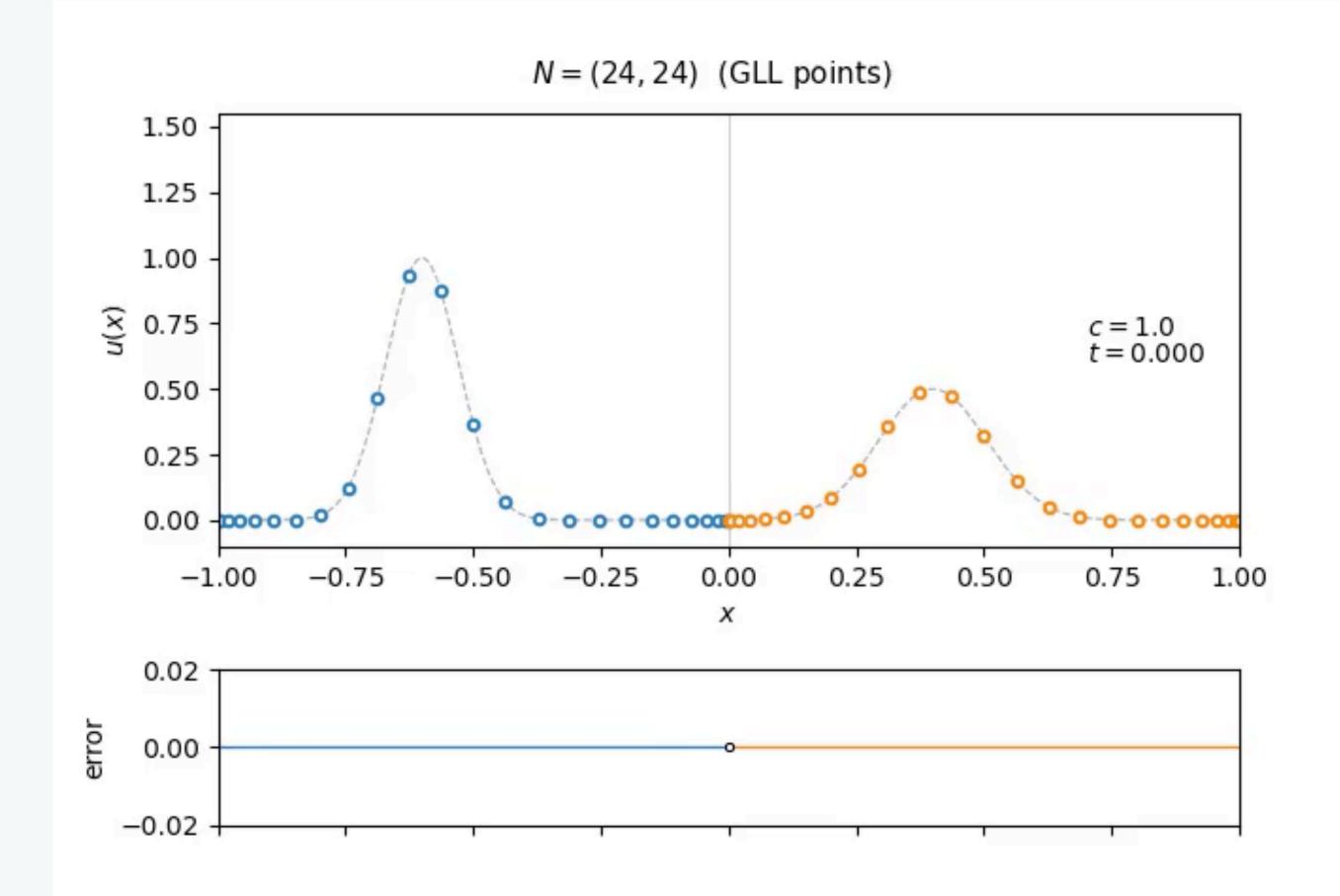
Riemann solver gives an appropriate value $F^*(U_L, U_R)$ numerical flux Each cell "communicates" with neighbors with the numerical flux

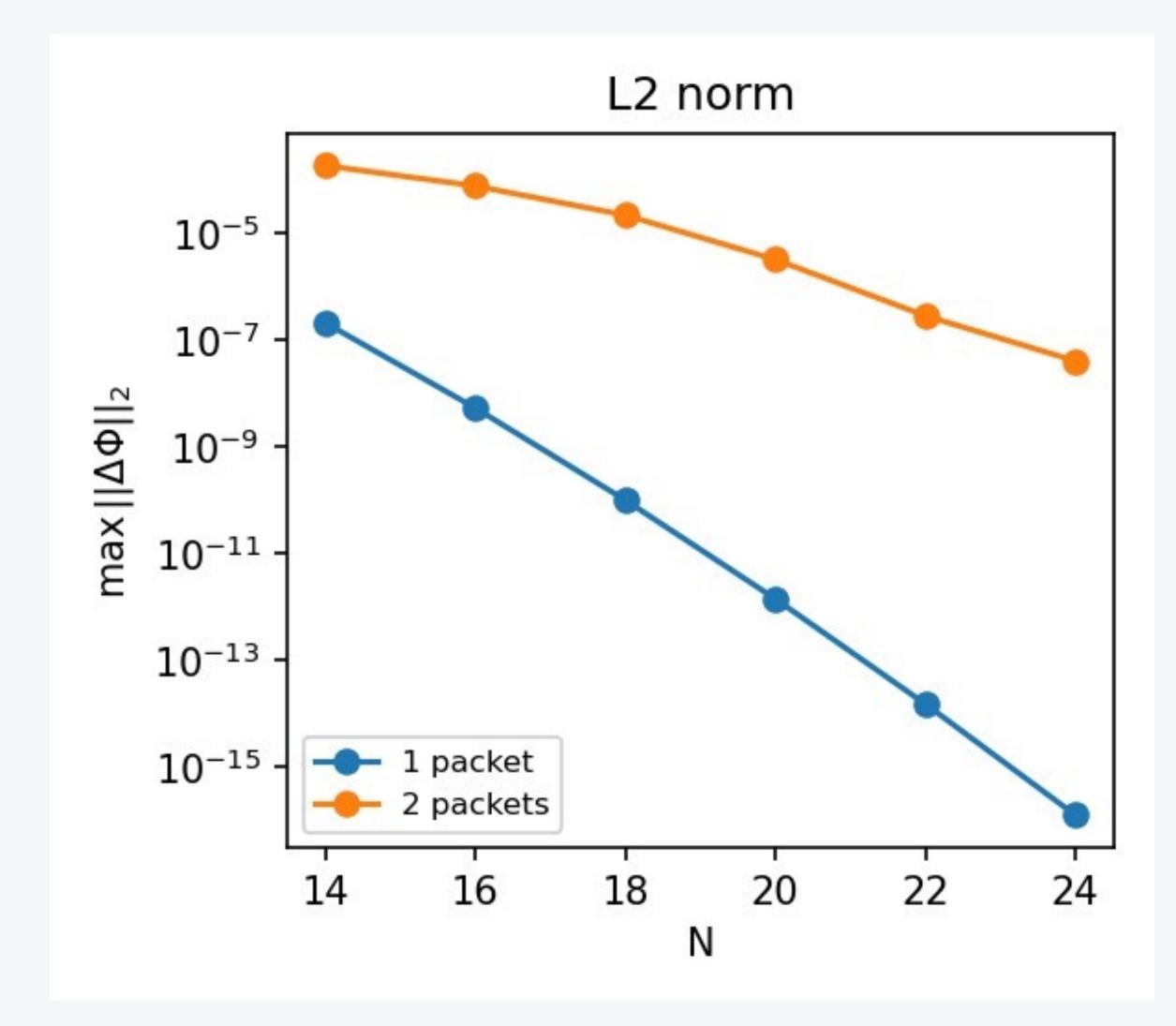
 Ω_k

• Example : 1D scalar wave $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$



• Example : 1D scalar wave $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$

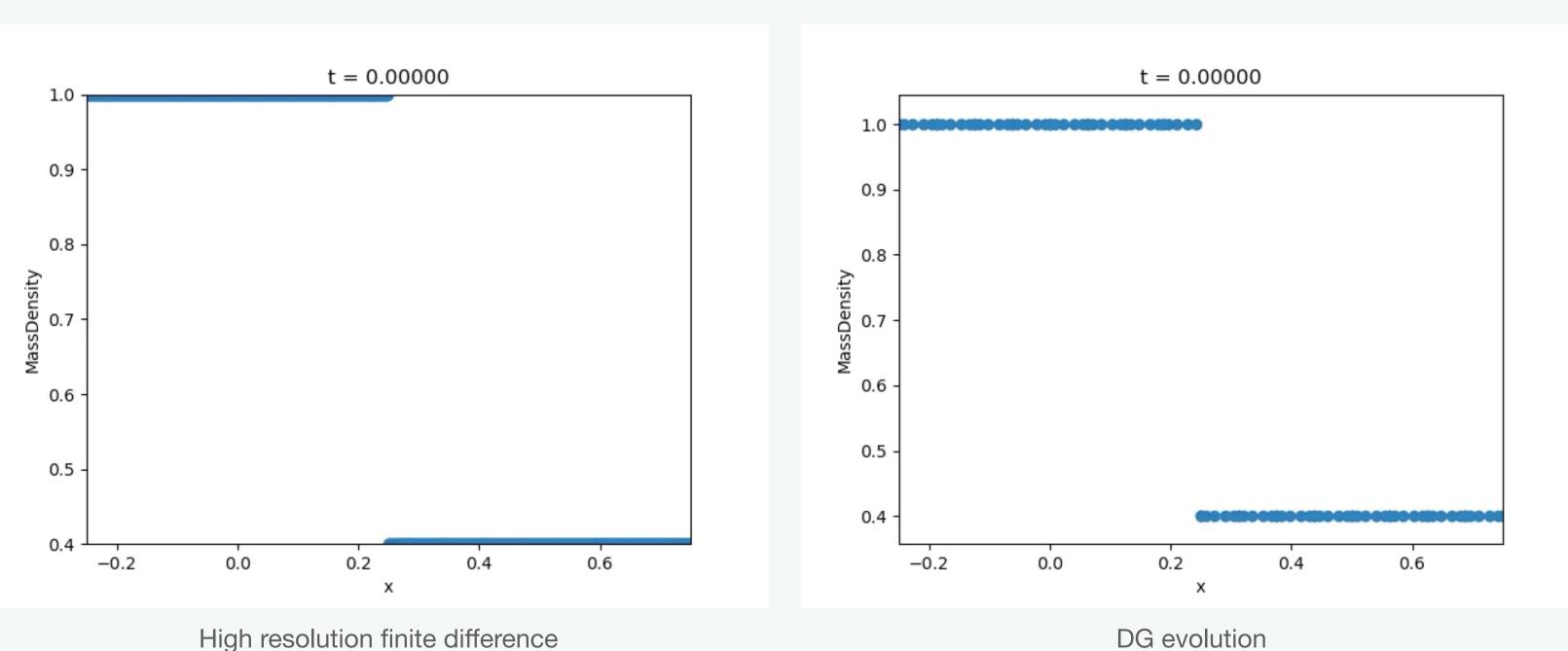




Shock capturing for DG

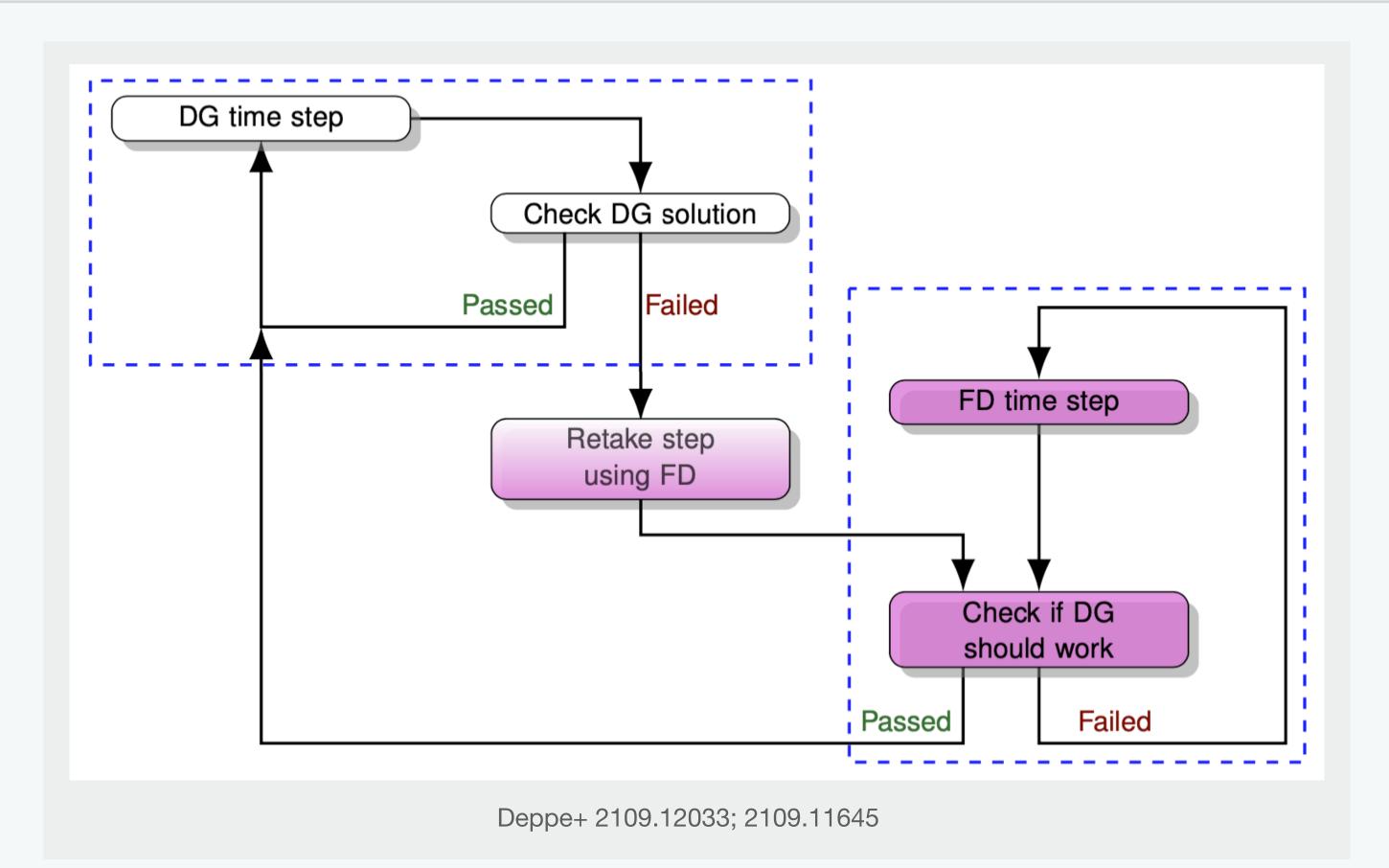
• Resolving sub-cell scale shock is still difficult

e.g. Sod problem (Newtonian hydrodynamics)



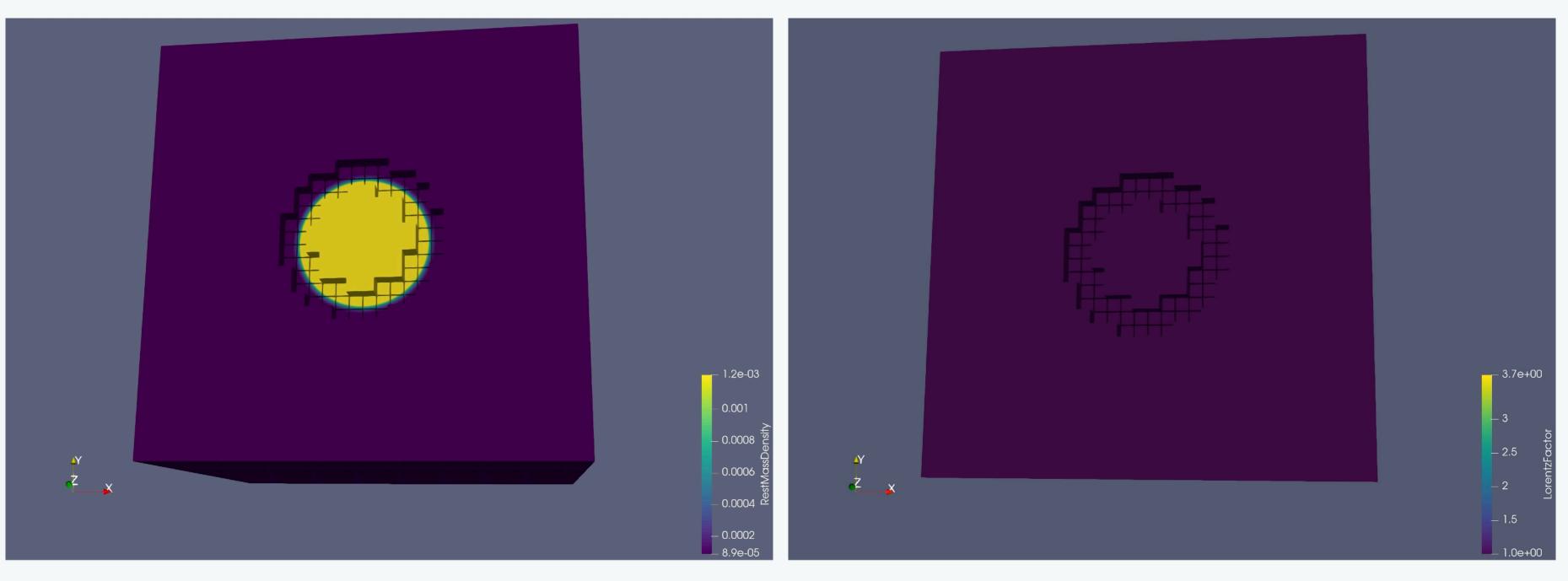
High resolution finite difference

Shock capturing for DG



Example) Kelvin-Helmholtz instability

Example) GRMHD blast wave



Mass density

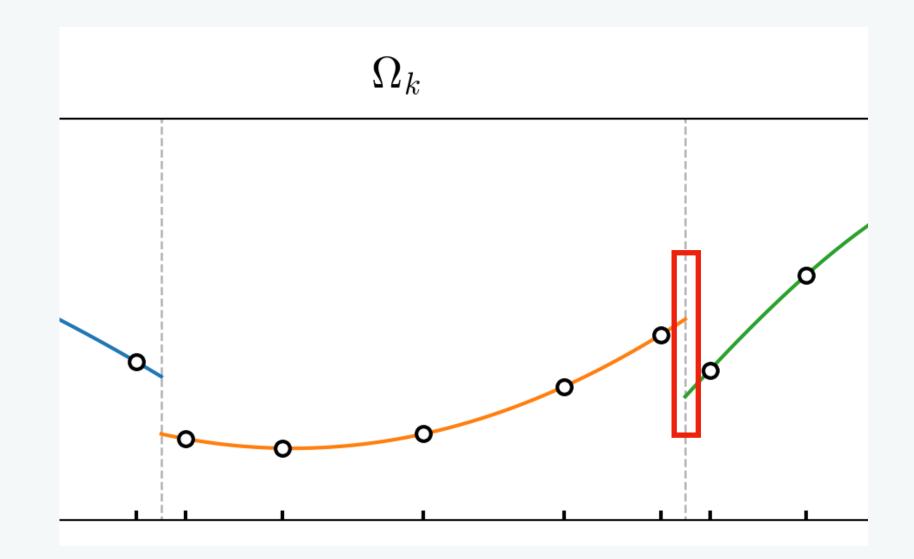
Lorentz factor

Discontinuous Galerkin method

- Spectral accuracy for each cells
- Discontinuities are resolved at cell interfaces
- Smaller (tighter) CFL limit than finite difference

$$\Delta t \le \frac{c}{d(2N+1)} \frac{\Delta x}{\lambda_{\max}}$$

Suited for parallelization
nearest-neighbor communication



SpECTRE code

https://github.com/sxs-collaboration/spectre

- Evolves first-order hyperbolic systems using DG method •
- Open source \bullet
- Task-based parallelism: Charm++ (<u>https://charm.cs.illinois.edu/</u>) •
- Elliptic solver (Vu+2022) \bullet
- Generalized Harmonic (GR) + Valencia (GRMHD) formulation ullet