
CBC�Search�in�Practice�&�
Applications�to�Astrophysics

Kyungmin Kim  
(Ewha Womans Univ.)

�2022�NRGW�Summer�School

of 392022�NRGW�Summer�SchoolKyungmin Kim 2

Contents
• Part I: CBC Search in Practice w/ Python

• Introduction to matched filtering

• Matched filtering in action

• Signal consistency and significance

• Part II: Applications to Astrophysics

• Brief recap of GW astrophysics

• Applications to machine learning (ML)-based astrophysics w/ selected examples

CBC	Search	in	Practice

w/	Python

of 392022�NRGW�Summer�SchoolKyungmin Kim 4

CBC Search in Practice w/ Python
• References

• Main: GW Open Data Workshop (ODW) 2022 - Day 2 Tutorial

• Homepage: https://www.gw-openscience.org/odw/odw2022
• Github: https://github.com/gw-odw/odw-2022/tree/main/Tutorials/Day_2

• Additional: GW Open Science Center

• "Signal processing with GW150914 Open Data"

• https://www.gw-openscience.org/s/events/GW150914/GW150914_tutorial.html

• ODW Day 2 Tutorial materials:

• Tuto_2.1_Matched_filtering_introduction

• Tuto_2.2_Matched_filtering_in_action

• Tuto_2.3_Signal_consistency_and_significance

https://www.gw-openscience.org/odw/odw2022
https://github.com/gw-odw/odw-2022/tree/main/Tutorials/Day_2
https://www.gw-openscience.org/s/events/GW150914/GW150914_tutorial.html

of 392022�NRGW�Summer�SchoolKyungmin Kim 5

Introduction to matched filtering
• Matched filtering

• optimal method for “detecting” known signals in Gaussian noise via computing cross-
correlation

[Video from https://youtu.be/bBBDR5jf9oU (credit: Alex Nitz)]

https://youtu.be/bBBDR5jf9oU

of 392022�NRGW�Summer�SchoolKyungmin Kim 5

Introduction to matched filtering
• Matched filtering

• optimal method for “detecting” known signals in Gaussian noise via computing cross-
correlation

[Video from https://youtu.be/bBBDR5jf9oU (credit: Alex Nitz)]

https://youtu.be/bBBDR5jf9oU

of 392022�NRGW�Summer�SchoolKyungmin Kim 6

Introduction to matched filtering
• Let’s learn how matched filtering works.

• Start with an example waveform in white noise.

• What’s white noise?

of 392022�NRGW�Summer�SchoolKyungmin Kim 6

Introduction to matched filtering
• Let’s learn how matched filtering works.

• Start with an example waveform in white noise.

• What’s white noise?

random signal having equal intensity

at different frequencies

of 392022�NRGW�Summer�SchoolKyungmin Kim 6

Introduction to matched filtering
• Let’s learn how matched filtering works.

• Start with an example waveform in white noise.

• What’s white noise?import numpy

sample_rate = 1024 # samples per second

data_length = 1024 # seconds

Generate a long stretch of white noise: the data series and time series

data = numpy.random.normal(size=[sample_rate * data_length])

times = numpy.arange(len(data)) / float(sample_rate)

from pycbc.waveform import get_td_waveform # to generate time series waveform

apx = ‘IMRPhenomD’ # Specify a waveform model; IMRPhenomD is a phenomenological  
 Inspiral-Merger-Ringdown waveform model  
 (dosen’t include effects such as non-aligned spins or high order modes)

hp, hx = get_td_waveform(approximant=apx, mass1=10, mass2=10, delta_t=1.0/sample_rate, 
 f_lower=25) # it returns ‘+’ and ‘×’ polarization modes of a GW signal

use only for now. if you want to use a whole waveform, just sum hp and hx such as h = hp + hx.

hp = hp / max(numpy.correlate(hp, hp, mode=‘full’))**0.5 # to demonstrate the method on white noise 
 with amplitude (1), we normalize our signal 
 so the cross-correlation of the signal with 
 itself will give a value of 1.

h+

𝒪

of 392022�NRGW�Summer�SchoolKyungmin Kim 6

Introduction to matched filtering
• Let’s learn how matched filtering works.

• Start with an example waveform in white noise.

• What’s white noise?import numpy

sample_rate = 1024 # samples per second

data_length = 1024 # seconds

Generate a long stretch of white noise: the data series and time series

data = numpy.random.normal(size=[sample_rate * data_length])

times = numpy.arange(len(data)) / float(sample_rate)

from pycbc.waveform import get_td_waveform # to generate time series waveform

apx = ‘IMRPhenomD’ # Specify a waveform model; IMRPhenomD is a phenomenological  
 Inspiral-Merger-Ringdown waveform model  
 (dosen’t include effects such as non-aligned spins or high order modes)

hp, hx = get_td_waveform(approximant=apx, mass1=10, mass2=10, delta_t=1.0/sample_rate, 
 f_lower=25) # it returns ‘+’ and ‘×’ polarization modes of a GW signal

use only for now. if you want to use a whole waveform, just sum hp and hx such as h = hp + hx.

hp = hp / max(numpy.correlate(hp, hp, mode=‘full’))**0.5 # to demonstrate the method on white noise 
 with amplitude (1), we normalize our signal 
 so the cross-correlation of the signal with 
 itself will give a value of 1.

h+

𝒪

of 392022�NRGW�Summer�SchoolKyungmin Kim 6

Introduction to matched filtering
• Let’s learn how matched filtering works.

• Start with an example waveform in white noise.

• What’s white noise?import numpy

sample_rate = 1024 # samples per second

data_length = 1024 # seconds

Generate a long stretch of white noise: the data series and time series

data = numpy.random.normal(size=[sample_rate * data_length])

times = numpy.arange(len(data)) / float(sample_rate)

from pycbc.waveform import get_td_waveform # to generate time series waveform

apx = ‘IMRPhenomD’ # Specify a waveform model; IMRPhenomD is a phenomenological  
 Inspiral-Merger-Ringdown waveform model  
 (dosen’t include effects such as non-aligned spins or high order modes)

hp, hx = get_td_waveform(approximant=apx, mass1=10, mass2=10, delta_t=1.0/sample_rate, 
 f_lower=25) # it returns ‘+’ and ‘×’ polarization modes of a GW signal

use only for now. if you want to use a whole waveform, just sum hp and hx such as h = hp + hx.

hp = hp / max(numpy.correlate(hp, hp, mode=‘full’))**0.5 # to demonstrate the method on white noise 
 with amplitude (1), we normalize our signal 
 so the cross-correlation of the signal with 
 itself will give a value of 1.

h+

𝒪

of 392022�NRGW�Summer�SchoolKyungmin Kim 6

Introduction to matched filtering
• Let’s learn how matched filtering works.

• Start with an example waveform in white noise.

• What’s white noise?import numpy

sample_rate = 1024 # samples per second

data_length = 1024 # seconds

Generate a long stretch of white noise: the data series and time series

data = numpy.random.normal(size=[sample_rate * data_length])

times = numpy.arange(len(data)) / float(sample_rate)

from pycbc.waveform import get_td_waveform # to generate time series waveform

apx = ‘IMRPhenomD’ # Specify a waveform model; IMRPhenomD is a phenomenological  
 Inspiral-Merger-Ringdown waveform model  
 (dosen’t include effects such as non-aligned spins or high order modes)

hp, hx = get_td_waveform(approximant=apx, mass1=10, mass2=10, delta_t=1.0/sample_rate, 
 f_lower=25) # it returns ‘+’ and ‘×’ polarization modes of a GW signal

use only for now. if you want to use a whole waveform, just sum hp and hx such as h = hp + hx.

hp = hp / max(numpy.correlate(hp, hp, mode=‘full’))**0.5 # to demonstrate the method on white noise 
 with amplitude (1), we normalize our signal 
 so the cross-correlation of the signal with 
 itself will give a value of 1.

h+

𝒪

of 392022�NRGW�Summer�SchoolKyungmin Kim 7

Introduction to matched filtering
To search for this signal, we can cross-correlate the signal with the entire dataset.

We do the cross-correlation in the time domain.

cross_correlation = numpy.zeros([len(data)-len(hp)])

hp_numpy = hp.numpy()

for i in range(len(data) - len(hp_numpy)):

 cross_correlation[i] = (hp_numpy * data[i:i+len(hp_numpy)]).sum()

of 392022�NRGW�Summer�SchoolKyungmin Kim 7

Introduction to matched filtering
To search for this signal, we can cross-correlate the signal with the entire dataset.

We do the cross-correlation in the time domain.

cross_correlation = numpy.zeros([len(data)-len(hp)])

hp_numpy = hp.numpy()

for i in range(len(data) - len(hp_numpy)):

 cross_correlation[i] = (hp_numpy * data[i:i+len(hp_numpy)]).sum()

of 392022�NRGW�Summer�SchoolKyungmin Kim 7

Introduction to matched filtering

• Detection in Colored Noise

• Let’s repeat the process, but generate a stretch of data colored with LIGO’s 

zero-detuned-high-power noise curve.

To search for this signal, we can cross-correlate the signal with the entire dataset.

We do the cross-correlation in the time domain.

cross_correlation = numpy.zeros([len(data)-len(hp)])

hp_numpy = hp.numpy()

for i in range(len(data) - len(hp_numpy)):

 cross_correlation[i] = (hp_numpy * data[i:i+len(hp_numpy)]).sum()

of 392022�NRGW�Summer�SchoolKyungmin Kim 7

Introduction to matched filtering

• Detection in Colored Noise

• Let’s repeat the process, but generate a stretch of data colored with LIGO’s 

zero-detuned-high-power noise curve.

To search for this signal, we can cross-correlate the signal with the entire dataset.

We do the cross-correlation in the time domain.

cross_correlation = numpy.zeros([len(data)-len(hp)])

hp_numpy = hp.numpy()

for i in range(len(data) - len(hp_numpy)):

 cross_correlation[i] = (hp_numpy * data[i:i+len(hp_numpy)]).sum()

[Images:  
from Wikipedia, 
“Colors of noise”]

White Noise

of 392022�NRGW�Summer�SchoolKyungmin Kim 8

Introduction to matched filtering
import pycbc.noise, pycbc.psd

The color of the noise matches a PSD which you provide, Advanced LIGO’s zero-detuned-high-power noise curve

flow = 10.0

delta_f = 1.0 / 128

flen = int(sample_rate / (2*delta_f)) + 1 # sample_rate = 1024 samples per second

psd = pycbc.psd.aLIGOZeroDetHighPower(flen, delta_f, flow)

Generate colored noise

delta_t = 1.0 / sample_rate

ts = pycbc.noise.noise_from_psd(data_length*sample_rate, delta_t, psd, seed=127)

Estimate the power spectral density for the noisy data using the “Welch” method.

We’ll choose 4 seconds PSD samples that are overlapped 50%

For more details about the “Welch” method, see arXiv:gr-qc/0509116 (Section VI)

seg_len = int(4 / delta_t)

seg_stride = int(seg_len / 2)

estimated_psd = pycbc.psd.welch(ts, seg_len=seg_len, seg_stride=seg_stride)

of 392022�NRGW�Summer�SchoolKyungmin Kim 8

Introduction to matched filtering
import pycbc.noise, pycbc.psd

The color of the noise matches a PSD which you provide, Advanced LIGO’s zero-detuned-high-power noise curve

flow = 10.0

delta_f = 1.0 / 128

flen = int(sample_rate / (2*delta_f)) + 1 # sample_rate = 1024 samples per second

psd = pycbc.psd.aLIGOZeroDetHighPower(flen, delta_f, flow)

Generate colored noise

delta_t = 1.0 / sample_rate

ts = pycbc.noise.noise_from_psd(data_length*sample_rate, delta_t, psd, seed=127)

Estimate the power spectral density for the noisy data using the “Welch” method.

We’ll choose 4 seconds PSD samples that are overlapped 50%

For more details about the “Welch” method, see arXiv:gr-qc/0509116 (Section VI)

seg_len = int(4 / delta_t)

seg_stride = int(seg_len / 2)

estimated_psd = pycbc.psd.welch(ts, seg_len=seg_len, seg_stride=seg_stride)

of 392022�NRGW�Summer�SchoolKyungmin Kim

• Then, all we need to do is to “whiten” both the data and the template waveform.

• Why do we need whitening?

• From the PSD, we can see that the data are very strongly “colored”.

• We can “whiten” the data suppressing the extra noise at low frequencies to better see

the weak signals in the most sensitive band.

• Whitening is always one of the first steps in astrophysical data analysis.

• This can be done, in the frequency domain, by dividing by the PSD.  
(This can be done in the time domain as well, but it’s more intuitive in the frequency
domain.)

Introduction to matched filtering

9

of 392022�NRGW�Summer�SchoolKyungmin Kim

The PSD, sampled properly for the noisy data

delta_f = 1.0 / data_length # data_length = 1024 seconds

flen = int(sample_rate / (2*delta_f)) + 1 # sample_rate = 1024 samples per second

psd_td = pycbc.psd.aLIGOZeroDetHighPower(flen, delta_f, 0)

The PSD, sampled properly for the signal

delta_f = sample_rate / float(len(hp))

flen = int(sample_rate / (2*delta_f)) + 1

psd_hp = pycbc.psd.aLIGOZeroDetHighPower(flen, delta_f, 0)

Convert both noisy data and the signal to frequency domain, and divide each by ASD,

then covert back to time domain. This “whitens” the data and the signal template.

Multiplying the signal template by 1E-21 puts it into realistic units of strain.

data_whitened = (ts.to_frequencyseries() / psd_td**0.5).to_timeseries()

hp_whitened = (hp.to_frequencyseries() / psd_hp**0.5).to_timeseries() * 1E-21

Now let’s re-do the correlation, in the time domain, but with

whitened data and template.

cross_correlation = numpy.zeros([len(data)-len(hp1)])

hpn = hp_whitened.numpy()

datan = data_whitened.numpy()

for i in range(len(datan) - len(hpn)):

 cross_correlation[i] = (hpn * datan[i:i+len(hpn)]).sum()

Introduction to matched filtering

10

of 392022�NRGW�Summer�SchoolKyungmin Kim

The PSD, sampled properly for the noisy data

delta_f = 1.0 / data_length # data_length = 1024 seconds

flen = int(sample_rate / (2*delta_f)) + 1 # sample_rate = 1024 samples per second

psd_td = pycbc.psd.aLIGOZeroDetHighPower(flen, delta_f, 0)

The PSD, sampled properly for the signal

delta_f = sample_rate / float(len(hp))

flen = int(sample_rate / (2*delta_f)) + 1

psd_hp = pycbc.psd.aLIGOZeroDetHighPower(flen, delta_f, 0)

Convert both noisy data and the signal to frequency domain, and divide each by ASD,

then covert back to time domain. This “whitens” the data and the signal template.

Multiplying the signal template by 1E-21 puts it into realistic units of strain.

data_whitened = (ts.to_frequencyseries() / psd_td**0.5).to_timeseries()

hp_whitened = (hp.to_frequencyseries() / psd_hp**0.5).to_timeseries() * 1E-21

Now let’s re-do the correlation, in the time domain, but with

whitened data and template.

cross_correlation = numpy.zeros([len(data)-len(hp1)])

hpn = hp_whitened.numpy()

datan = data_whitened.numpy()

for i in range(len(datan) - len(hpn)):

 cross_correlation[i] = (hpn * datan[i:i+len(hpn)]).sum()

Introduction to matched filtering

10

of 392022�NRGW�Summer�SchoolKyungmin Kim

The PSD, sampled properly for the noisy data

delta_f = 1.0 / data_length # data_length = 1024 seconds

flen = int(sample_rate / (2*delta_f)) + 1 # sample_rate = 1024 samples per second

psd_td = pycbc.psd.aLIGOZeroDetHighPower(flen, delta_f, 0)

The PSD, sampled properly for the signal

delta_f = sample_rate / float(len(hp))

flen = int(sample_rate / (2*delta_f)) + 1

psd_hp = pycbc.psd.aLIGOZeroDetHighPower(flen, delta_f, 0)

Convert both noisy data and the signal to frequency domain, and divide each by ASD,

then covert back to time domain. This “whitens” the data and the signal template.

Multiplying the signal template by 1E-21 puts it into realistic units of strain.

data_whitened = (ts.to_frequencyseries() / psd_td**0.5).to_timeseries()

hp_whitened = (hp.to_frequencyseries() / psd_hp**0.5).to_timeseries() * 1E-21

Now let’s re-do the correlation, in the time domain, but with

whitened data and template.

cross_correlation = numpy.zeros([len(data)-len(hp1)])

hpn = hp_whitened.numpy()

datan = data_whitened.numpy()

for i in range(len(datan) - len(hpn)):

 cross_correlation[i] = (hpn * datan[i:i+len(hpn)]).sum()

Introduction to matched filtering

10

in White noise

in Whiten colored noise

of 392022�NRGW�Summer�SchoolKyungmin Kim 11

Matched filtering in action
• Looking for a specific signal in the data

• If you know what signal you are looking for in the data, then matched filtering is
known to be the optimal method in Gaussian noise to extract the signal.

• Even when the parameters of the signal are unknown, one can test any set of
parameters interested in finding.

Preconditioning the data.

The purpose of preconditioning the data is to reduce the dynamic range of the data and to suppress low
frequency behavior that can introduce numerical artifacts. We may also wish to reduce the sample rate of the
data if high frequency content is not important.

from pycbc.catalog import Merger

from pycbc.filter import resample_to_delta_t, highpass

As an example we use the GW150914 data

merger = Merger(“GW150914”)

Get the data from the Hanford detector

strain = merger.strain(‘H1’)

Remove the low frequency content and downsample the data to 2048 Hz.

strain = highpass(strain, 15.0)

strain = resample_to_delta_t(strain, 1.0/2048)

of 392022�NRGW�Summer�SchoolKyungmin Kim 11

Matched filtering in action
• Looking for a specific signal in the data

• If you know what signal you are looking for in the data, then matched filtering is
known to be the optimal method in Gaussian noise to extract the signal.

• Even when the parameters of the signal are unknown, one can test any set of
parameters interested in finding.

Preconditioning the data.

The purpose of preconditioning the data is to reduce the dynamic range of the data and to suppress low
frequency behavior that can introduce numerical artifacts. We may also wish to reduce the sample rate of the
data if high frequency content is not important.

from pycbc.catalog import Merger

from pycbc.filter import resample_to_delta_t, highpass

As an example we use the GW150914 data

merger = Merger(“GW150914”)

Get the data from the Hanford detector

strain = merger.strain(‘H1’)

Remove the low frequency content and downsample the data to 2048 Hz.

strain = highpass(strain, 15.0)

strain = resample_to_delta_t(strain, 1.0/2048)

of 392022�NRGW�Summer�SchoolKyungmin Kim 12

Matched filtering in action
• Filter wraparound

• Note the spike in the data at the boundaries. This is caused by the highpass and
resampling stages filtering the data. When the filter is applied to the boundaries, it
wraps around to the beginning of the data. Since the data itself has a discontinuity (i.e.
it is not cyclic) the filter itself will ring off for a time up to the length of the filter.

• Even if a visible transient is not seen, we want to avoid filters that act on times which
are not causally connected. To avoid this, we trim the ends of the data sufficiently to
ensure that they do not wrap around the input. We will enforce this requirement in all
steps of our filtering.

Remove 2 seconds of data from both the beginning and end

conditioned = strain.crop(2, 2)

of 392022�NRGW�Summer�SchoolKyungmin Kim 13

Matched filtering in action
• Calculate the power spectral density

• Optimal matched filtering requires weighting the frequency components of the potential
signal and data by the noise amplitude. We can view this as filtering the data with the
time series equivalent of 1 / PSD. To ensure that we can control the effective length of
the filter, we window the time domain equivalent of the PSD to a specific length.

from pycbc.psd import interpolate, inverse_spectrum_truncation

We use 4 second samples of our time series in Welch method.

psd = conditioned.psd(4)

Now that we have the psd we need to interpolate it to match our data and then limit the filter length of 1 / PSD.

psd = interpolate(psd, conditioned.delta_f)

1/PSD will now act as a filter with an effective length of 4 seconds.

Since the data has been highpassed above 15 Hz, and will have low values below this, we need to inform the
function to not include frequencies below the frequency

psd = inverse_spectrum_truncation(psd, int(4*conditioned.sample_rate), low_frequency_cutoff=15)

of 392022�NRGW�Summer�SchoolKyungmin Kim 14

Matched filtering in action
• Make our signal model

• In this case, we “know” what the signal parameters are. In a real search, we would grid
over the parameters and calculate the SNR time series for each one.

• We assume equal masses and non-rotating black holes.

• The waveform begins at the start of the vector, so if we want the SNR time series to
correspond to the approximate merger location (time), we need to shift the data so that the
merger is approximately at the first bin of the data.

from pycbc.waveform import get_td_waveform

m = 36 # Solar masses

hp, hc = get_td_waveform(approximant=“SEOBNRv4_opt”, mass1=m, mass2=m, delta_t=conditioned.delta_t, 
 f_lower=20)

Resize the vector to match our data

hp.resize(len(conditioned))

template = hp.cyclic_time_shift(hp.start_time)

of 392022�NRGW�Summer�SchoolKyungmin Kim 15

Matched filtering in action
• Calculating the signal-to-noise time series

• We’ll take care to handle issues of filter corruption / wraparound by truncating the
output time series. We need to account for both the length of the template and  
1/PSD.

from pycbc.filter import matched_filter

import numpy

snr = matched_filter(template, conditioned, psd=psd, low_frequency_cutoff=20)

Remove time corrupted by the template filter and the psd filter. We remove 4 seconds at the beginning and end
for the PSD filtering.

And we remove 4 additional seconds at the beginning to account for the template length (this is somewhat
generous for so short a template). A longer signal such as from a BNS, would require much more padding at the
beginning of the vector

snr = snr.crop(4 + 4, 4)

peak = abs(snr).numpy().argmax(). # returns the index of peak SNR

snrp = snr[peak]

time = snr.sample_times[peak]

of 392022�NRGW�Summer�SchoolKyungmin Kim 15

Matched filtering in action
• Calculating the signal-to-noise time series

• We’ll take care to handle issues of filter corruption / wraparound by truncating the
output time series. We need to account for both the length of the template and  
1/PSD.

from pycbc.filter import matched_filter

import numpy

snr = matched_filter(template, conditioned, psd=psd, low_frequency_cutoff=20)

Remove time corrupted by the template filter and the psd filter. We remove 4 seconds at the beginning and end
for the PSD filtering.

And we remove 4 additional seconds at the beginning to account for the template length (this is somewhat
generous for so short a template). A longer signal such as from a BNS, would require much more padding at the
beginning of the vector

snr = snr.crop(4 + 4, 4)

peak = abs(snr).numpy().argmax(). # returns the index of peak SNR

snrp = snr[peak]

time = snr.sample_times[peak] We found a signal at 1126259462.4248047s with  

SNR 19.677089013145878

of 392022�NRGW�Summer�SchoolKyungmin Kim

• Visualize the overlap between the signal and the data
from pycbc.filter import sigma

Shift the template to the peak time

dt = time - conditioned.start_time

aligned = template.cyclic_time_shift(dt)

Scale the template so that it would have SNR 1 in this data

aligned /= sigma(aligned, psd=psd, low_frequency_cutoff=20.0)

Scale the template amplitude and phase to the peak value

aligned = (aligned.to_frequencyseries() * snrp).to_timeseries()

aligned.start_time = conditioned.start_time

To compare the data and signal on equal footing, and to concentrate on the frequency range that is important,
we whiten both the template and the data.

Then, bandpass both the data and template between 30-300 Hz. In this way, any signal that is in the data is
transformed in the same way that the template is.

white_data = (conditioned.to_frequencyseries() / psd**0.5).to_timeseries()

white_template (aligned.to_frequencyseries() / psd**0.5).to_timeseries()

white_data = white_data.highpass_fir(30, 512).lowpass_fir(300, 512)

white_template = white_template.highpass_fir(30, 512).lowpass_fir(300, 512)

Select the time around the merger

white_data = white_data.time_slice(merger.time-.2, merger.time+.1). # take [-0.2s, +0.1s] around the merger time

white_template = white_template.time_slice(merger.time-.2, merger.time+.1)

16

Matched filtering in action

of 392022�NRGW�Summer�SchoolKyungmin Kim

• Visualize the overlap between the signal and the data
from pycbc.filter import sigma

Shift the template to the peak time

dt = time - conditioned.start_time

aligned = template.cyclic_time_shift(dt)

Scale the template so that it would have SNR 1 in this data

aligned /= sigma(aligned, psd=psd, low_frequency_cutoff=20.0)

Scale the template amplitude and phase to the peak value

aligned = (aligned.to_frequencyseries() * snrp).to_timeseries()

aligned.start_time = conditioned.start_time

To compare the data and signal on equal footing, and to concentrate on the frequency range that is important,
we whiten both the template and the data.

Then, bandpass both the data and template between 30-300 Hz. In this way, any signal that is in the data is
transformed in the same way that the template is.

white_data = (conditioned.to_frequencyseries() / psd**0.5).to_timeseries()

white_template (aligned.to_frequencyseries() / psd**0.5).to_timeseries()

white_data = white_data.highpass_fir(30, 512).lowpass_fir(300, 512)

white_template = white_template.highpass_fir(30, 512).lowpass_fir(300, 512)

Select the time around the merger

white_data = white_data.time_slice(merger.time-.2, merger.time+.1). # take [-0.2s, +0.1s] around the merger time

white_template = white_template.time_slice(merger.time-.2, merger.time+.1)

16

Matched filtering in action

of 392022�NRGW�Summer�SchoolKyungmin Kim 17

Matched filtering in action
• Subtracting the signal from the data

• Now that we’ve aligned the template we can simply subtract it. Let’s see it how that
looks in the time-frequency plots.

of 392022�NRGW�Summer�SchoolKyungmin Kim 18

Matched filtering in action
• Subtracting the signal from the data in reality.

[Figure from Abbott+ (2016, PRL)]

of 392022�NRGW�Summer�SchoolKyungmin Kim 19

Signal consistency and significance
• How well is the data actually fitting our model?

• -based signal consistency test is a standard one for the purpose.

• Schematically, we chop up our template into number of bins and see how much each
contributes to the SNR ().

• Now, we use both LIGO-Hanford (H1) and LIGO-Livingston (L1) data of GW150914.

χ2

p
ρi

χ2 =
p

∑
i=0

(ρi − ρ/p)2

merger = Merger(“GW150914”)

ifos = [‘H1’, ‘L1’]

from pycbc.vetos import power_chisq

data = {}

psd = {}

for ifo in ifos:

 ts = merger.strain(ifo).highpass_fir(20, 512)

 data[ifo] = resample_to_delta_t(ts, 1.0/2048).crop(2, 2)

 # Estimate the power spectral density of the data

 p = data[ifo].psd(4)

 p = interpolate(p, data[ifo].delta_f)

 p = inverse_spectrum_truncation(p, int(2 * data[ifo].sample_rate), low_frequency_cutoff=20.0)

 psd[ifo] = p

of 392022�NRGW�Summer�SchoolKyungmin Kim 20

Signal consistency and significance
Calculate the component mass of each black hole in the detector frame

cmass = (merger.median1d(“mass1”)+merger.meedian1d(“mass2”)) / 2 # This is in the source frame

cmass *= (1 + merger.median1d(“redshift”)). # apply redshift to get to the detector frame

hp, _ = get_fd_waveform(approximant=“IMRPhenomD”, mass1=cmass, mass2=cmass, f_lower=20.0,

 delta_f=data[ifo].delta_f)

hp.resize(len(psd[ifo]))

For each observatory, use this template to calculate the SNR time series

snr = {}

for ifo in ifos:

 snr[ifo] = matched_filtering(hp, data[ifo], psd=psd[ifo], low_frequency_cutoff=20)

 snr[ifo] = snr[ifo].crop(4+4, 4)

of 392022�NRGW�Summer�SchoolKyungmin Kim 21

Signal consistency and significance
from pycbc.vetoes import power_chisq

chisq = {}

for ifo in ifos:

 # The number of bins to use. In principle, this choice is arbitrary. In practice, this is empirically tuned.

 nbins = 26

 chisq[ifo] = power_chisq(hp, data[ifo], nbins, psd[ifo], low_frequency_cutoff=20.0)

 chisq[ifo] = chisq[ifo].crop(4+4, 4)

 dof = nbins * 2 - 2

 chisq[ifo] /= dof

of 392022�NRGW�Summer�SchoolKyungmin Kim 22

Signal consistency and significance
• We see the SNR of L1 is lower than that of H1. Let’s see the significance of L1 event.

from pycbc.detector import Detector

Calculate the time of flight between the LIGO-Livingston and LIGO-Hanford

d = Detector(“L1”)

tof = {}

tof[‘H1’] = d.light_travel_time_to_detector(Detector(“H1”))

Record the time of the peak in the LIGO-Hanford

ptime = {}

ptime[‘H1’] = snr[‘H1’].sample_times[snr[‘H1’].argmax()]

Calculate the span of time that LIGO-Livingston peak could in principle happen in from time of flight
considerations.

start = ptime[‘H1’] - tof[‘H1’]

end = ptime[‘H1’] + tof[‘H1’]

convert the times to indices along with how large the region is in number of samples

window_size = int((end - start) * snr[‘L1’].sample_rate)

sidx = int((start - snr[‘L1’].start_time) * snr[‘L1’].sample_rate)

eidx = sidx + window_size

Calculate the “on-source” peak

onsource = snr[‘L1’][sidx:eidx].max()

of 392022�NRGW�Summer�SchoolKyungmin Kim 22

Signal consistency and significance
• We see the SNR of L1 is lower than that of H1. Let’s see the significance of L1 event.

from pycbc.detector import Detector

Calculate the time of flight between the LIGO-Livingston and LIGO-Hanford

d = Detector(“L1”)

tof = {}

tof[‘H1’] = d.light_travel_time_to_detector(Detector(“H1”))

Record the time of the peak in the LIGO-Hanford

ptime = {}

ptime[‘H1’] = snr[‘H1’].sample_times[snr[‘H1’].argmax()]

Calculate the span of time that LIGO-Livingston peak could in principle happen in from time of flight
considerations.

start = ptime[‘H1’] - tof[‘H1’]

end = ptime[‘H1’] + tof[‘H1’]

convert the times to indices along with how large the region is in number of samples

window_size = int((end - start) * snr[‘L1’].sample_rate)

sidx = int((start - snr[‘L1’].start_time) * snr[‘L1’].sample_rate)

eidx = sidx + window_size

Calculate the “on-source” peak

onsource = snr[‘L1’][sidx:eidx].max()

of 392022�NRGW�Summer�SchoolKyungmin Kim 23

Signal consistency and significance
• Now that we’ve calculated the on-source peak, we should calculate the background peak

values.

• We do this by chopping up the time series into chunks that are the same size as our on-

source and repeating the same peak finding (max) procedure.

•

import numpy

peaks = []

i = 0

while i + window_size < len(snr[‘L1’]):

 p = snr[‘L1’][i:i+window_size].max()

 peaks.append(p)

 i += window_size

 # skip past the onsource time

 if abs(i - sidx) < window_size:

 i += window_size * 2

peaks = numpy.array(peaks)

The p-value is just the number of samples observed in the background with a value equal or higher than the on-
source divided by the number of samples.

pcurve = numpy.arange(1, len(peaks)+1)[::-1] / float(len(peaks))

peaks.sort()

pvalue = (peaks > onsource).sum() / float(len(peaks))

of 392022�NRGW�Summer�SchoolKyungmin Kim 23

Signal consistency and significance
• Now that we’ve calculated the on-source peak, we should calculate the background peak

values.

• We do this by chopping up the time series into chunks that are the same size as our on-

source and repeating the same peak finding (max) procedure.

•

import numpy

peaks = []

i = 0

while i + window_size < len(snr[‘L1’]):

 p = snr[‘L1’][i:i+window_size].max()

 peaks.append(p)

 i += window_size

 # skip past the onsource time

 if abs(i - sidx) < window_size:

 i += window_size * 2

peaks = numpy.array(peaks)

The p-value is just the number of samples observed in the background with a value equal or higher than the on-
source divided by the number of samples.

pcurve = numpy.arange(1, len(peaks)+1)[::-1] / float(len(peaks))

peaks.sort()

pvalue = (peaks > onsource).sum() / float(len(peaks))
The p-value associate with  
the GW150914 peak is 0.

It means there is no louder peak 
than the peak of L1.

of 392022�NRGW�Summer�SchoolKyungmin Kim 23

Signal consistency and significance
• Now that we’ve calculated the on-source peak, we should calculate the background peak

values.

• We do this by chopping up the time series into chunks that are the same size as our on-

source and repeating the same peak finding (max) procedure.

•

import numpy

peaks = []

i = 0

while i + window_size < len(snr[‘L1’]):

 p = snr[‘L1’][i:i+window_size].max()

 peaks.append(p)

 i += window_size

 # skip past the onsource time

 if abs(i - sidx) < window_size:

 i += window_size * 2

peaks = numpy.array(peaks)

The p-value is just the number of samples observed in the background with a value equal or higher than the on-
source divided by the number of samples.

pcurve = numpy.arange(1, len(peaks)+1)[::-1] / float(len(peaks))

peaks.sort()

pvalue = (peaks > onsource).sum() / float(len(peaks))
The p-value associate with  
the GW150914 peak is 0.

It means there is no louder peak 
than the peak of L1.

of 392022�NRGW�Summer�SchoolKyungmin Kim 24

Signal consistency and significance
• However, we may have if a peak of any detector is not that much significant.

• Example: GW170814 observed by the LIGO observatories and Virgo 

 

• We find a peak in Virgo as large as the observed one has an approximately 2% chance of
occurring due to the noise alone.

• If , we may reject the null hypothesis that the observed peak is due to noise
alone.

p > 0

p < 0.05

The p-value associate with the GW170814 peak of Virgo is  
0.01927710843373494.

of 392022�NRGW�Summer�SchoolKyungmin Kim 25

Summary
• We have demonstrated how to find a candidate GW signal from noisy data.

(1) Estimating PSD from noisy data

(2) Preparing template waveform

(3) Whitening

(4) Computing the cross-correlation (signal-to-noise ratio) between the template and the

data

(5) Testing consistency between the template and the data with test

(6) Evaluating significance with -value estimation

χ2

p

Applications

to

Astrophysics

of 392022�NRGW�Summer�SchoolKyungmin Kim 27

Applications to Astrophysics
• All observed events to date are compact binary coalescences as noted in Chunglee Kim’s lecture.

• Binary black holes

• Binary neutron stars

• Neutron star-black hole binaries

• Black hole

• Non-zero black hole spins  

→ existence of Kerr-type black holes

•

• Neutron star

• Equation of states (EoS) 

→ constraint EoS models

• Hubble constant measurement 

(cosmology)

• For more details, please refer  

Chunglee Kim’s lecture on GW Astrophysics.

MBH > 20M⊙

GW

Detections

GW

Astrophysics

of 392022�NRGW�Summer�SchoolKyungmin Kim 27

Applications to Astrophysics
• All observed events to date are compact binary coalescences as noted in Chunglee Kim’s lecture.

• Binary black holes

• Binary neutron stars

• Neutron star-black hole binaries

• Black hole

• Non-zero black hole spins  

→ existence of Kerr-type black holes

•

• Neutron star

• Equation of states (EoS) 

→ constraint EoS models

• Hubble constant measurement 

(cosmology)

• For more details, please refer  

Chunglee Kim’s lecture on GW Astrophysics.

MBH > 20M⊙

GW

Detections

GW

Astrophysics

GW190425

High spin Low spin

[Abbott+ (2020, ApJL)]

Applications	to

ML-based	Astrophysics

(Selected	Examples)

of 392022�NRGW�Winter�SchoolKyungmin Kim

• Motivation

• Progenitors of short GRBs can radiate both GW and EM waves.

• proved by GW170817 and GRB170817 later on.

• Previous searches for LIGO’s S5 & S6 and Virgo’s VSR1, VSR2, & VSR3 data

couldn’t find any evidence from the candidate triggers (events) evaluated by a
ranking statistics of a matched-filtering-based search method  
(Abadie+ (2010, 2012); Aasi+ (2014)).

• Neural networks can be a new ranking method for candidate events.

ML for GW Search Related to Short GRBs

29

KK+, CQG 32 (2015) 24, 245002

“Short gamma-ray bursts (GRBs)

are the most energetic events

in our Universe.”

of 392022�NRGW�Winter�SchoolKyungmin Kim

• Motivation

• Progenitors of short GRBs can radiate both GW and EM waves.

• proved by GW170817 and GRB170817 later on.

• Previous searches for LIGO’s S5 & S6 and Virgo’s VSR1, VSR2, & VSR3 data

couldn’t find any evidence from the candidate triggers (events) evaluated by a
ranking statistics of a matched-filtering-based search method  
(Abadie+ (2010, 2012); Aasi+ (2014)).

• Neural networks can be a new ranking method for candidate events.

ML for GW Search Related to Short GRBs

29

KK+, CQG 32 (2015) 24, 245002

of 392022�NRGW�Summer�SchoolKyungmin Kim

• Date preparation

• We use some triggers generated by the existing analysis pipeline which produces

• on-source triggers: regarded as containing a candidate GW signal

• off-source triggers: estimating background distribution around the candidate

• software injection triggers: evaluating the performance of the search pipeline

• We use the software injection triggers as signal samples and the off-source triggers as
background samples.

• software injection: considering both BNS and NSBH systems

ML for GW Search Related to Short GRBs

30

Short GRB's event time

-1097 -1025 -53 -5 +1 +49 +1021 +1093

72 s 972 s 48 s 6 s 48 s 972 s 72 s

On-source segment

Buffer segment

Off-source segment

Padding segment

Short GRB's event time

-1097 -1025 -53 -5 +1 +49 +1021 +1093

72 s 972 s 48 s 6 s 48 s 972 s 72 s

On-source segment

Buffer segment

Off-source segment

Padding segment

KK+, CQG 32 (2015) 24, 245002

of 392022�NRGW�Summer�SchoolKyungmin Kim 31

ML for GW Search Related to Short GRBs

 For both neutron star binary (BNS)  
 and neutron star - black hole binary 
 (NSBH)… 

Signal samples (~2 000 samples) /

Background samples (~7 000 samples)

+

10 Feature Parameters from

CBC-GRB triggers

• Single IFO’s SNRs

• Coherent SNR, New SNR

• Coherent 𝜒2-test, bank 𝜒2-test,  

auto-correlation 𝜒2-test value

• Mass 1 and Mass 2 of BNS or NSBH

 with two S5 & VSR1  
 triple-coincidence data  
 (070714B & 070923)

~5%—10% improved efficiency

070714B NSBH 070714B BNSClassification

with  

Neural Network

as post-

processing

Sensitivity
Evaluating

Unknown

Triggers

070714B NSBH

KK+, CQG 32 (2015) 24, 245002

of 392022�NRGW�Summer�SchoolKyungmin Kim

• Motivation

• If GWs propagate around heavy mass systems, they can be lensed like EM waves.

• If the time delay of two lensed images is short enough (~ms), the images would be

superposed.

ML for Identification of Lensed GWs

32

Unlensed Lensed

KK+, ApJ  
915 (2021) 2, 119

Lens

Source

δ

hI
l

hII
l

Source
 plane

Len
s p

lane

Observer

<latexit sha1_base64="0hWvbK9VJoHIZeFDxB70iplqqw8=">AAACAnicbZDLSsNAFIYn9VbrLepK3AwWwVVJRNRlQReupIK9QBvCZDpph85MwsxEKCG48VXcuFDErU/hzrdxkmahrT8MfPznHOacP4gZVdpxvq3K0vLK6lp1vbaxubW9Y+/udVSUSEzaOGKR7AVIEUYFaWuqGenFkiAeMNINJld5vftApKKRuNfTmHgcjQQNKUbaWL59MOBIjzFi6XXmFyx5yohQmW/XnYZTCC6CW0IdlGr59tdgGOGEE6ExQ0r1XSfWXoqkppiRrDZIFIkRnqAR6RsUiBPlpcUJGTw2zhCGkTRPaFi4vydSxJWa8sB05kuq+Vpu/lfrJzq89FIq4kQTgWcfhQmDOoJ5HnBIJcGaTQ0gLKnZFeIxkghrk1rNhODOn7wIndOGe95w787qzdsyjio4BEfgBLjgAjTBDWiBNsDgETyDV/BmPVkv1rv1MWutWOXMPvgj6/MHWnuYFw==</latexit>Dlens
<latexit sha1_base64="0xzrHGTbvM1OpNADkkm5hCcgJ64=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYBFclEVGXBV24kgr2Am0Ik+mkHTozCTMToYS48VXcuFDErW/hzrdxkmahrT8MfPznHOacP4gZVdpxvq3K0vLK6lp1vbaxubW9Y+/udVSUSEzaOGKR7AVIEUYFaWuqGenFkiAeMNINJld5vftApKKRuNfTmHgcjQQNKUbaWL59MOBIjzFi6XXmFyx5qiTOfLvuNJxCcBHcEuqgVMu3vwbDCCecCI0ZUqrvOrH2UiQ1xYxktUGiSIzwBI1I36BAnCgvLS7I4LFxhjCMpHlCw8L9PZEirtSUB6Yz31HN13Lzv1o/0eGll1IRJ5oIPPsoTBjUEczjgEMqCdZsagBhSc2uEI+RRFib0GomBHf+5EXonDbc84Z7d1Zv3pZxVMEhOAInwAUXoAluQAu0AQaP4Bm8gjfryXqx3q2PWWvFKmf2wR9Znz+K1Jej</latexit>Dsrc

NASA/ESA

NASAESA/Hubble & NASA

of 392022�NRGW�Summer�SchoolKyungmin Kim

• Motivation

• If GWs propagate around heavy mass systems, they can be lensed like EM waves.

• If the time delay of two lensed images is short enough (~ms), the images would be

superposed.

ML for Identification of Lensed GWs

32

Unlensed Lensed

KK+, ApJ  
915 (2021) 2, 119

Lens

Source

δ

hI
l

hII
l

Source
 plane

Len
s p

lane

Observer

<latexit sha1_base64="0hWvbK9VJoHIZeFDxB70iplqqw8=">AAACAnicbZDLSsNAFIYn9VbrLepK3AwWwVVJRNRlQReupIK9QBvCZDpph85MwsxEKCG48VXcuFDErU/hzrdxkmahrT8MfPznHOacP4gZVdpxvq3K0vLK6lp1vbaxubW9Y+/udVSUSEzaOGKR7AVIEUYFaWuqGenFkiAeMNINJld5vftApKKRuNfTmHgcjQQNKUbaWL59MOBIjzFi6XXmFyx5yohQmW/XnYZTCC6CW0IdlGr59tdgGOGEE6ExQ0r1XSfWXoqkppiRrDZIFIkRnqAR6RsUiBPlpcUJGTw2zhCGkTRPaFi4vydSxJWa8sB05kuq+Vpu/lfrJzq89FIq4kQTgWcfhQmDOoJ5HnBIJcGaTQ0gLKnZFeIxkghrk1rNhODOn7wIndOGe95w787qzdsyjio4BEfgBLjgAjTBDWiBNsDgETyDV/BmPVkv1rv1MWutWOXMPvgj6/MHWnuYFw==</latexit>Dlens
<latexit sha1_base64="0xzrHGTbvM1OpNADkkm5hCcgJ64=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYBFclEVGXBV24kgr2Am0Ik+mkHTozCTMToYS48VXcuFDErW/hzrdxkmahrT8MfPznHOacP4gZVdpxvq3K0vLK6lp1vbaxubW9Y+/udVSUSEzaOGKR7AVIEUYFaWuqGenFkiAeMNINJld5vftApKKRuNfTmHgcjQQNKUbaWL59MOBIjzFi6XXmFyx5qiTOfLvuNJxCcBHcEuqgVMu3vwbDCCecCI0ZUqrvOrH2UiQ1xYxktUGiSIzwBI1I36BAnCgvLS7I4LFxhjCMpHlCw8L9PZEirtSUB6Yz31HN13Lzv1o/0eGll1IRJ5oIPPsoTBjUEczjgEMqCdZsagBhSc2uEI+RRFib0GomBHf+5EXonDbc84Z7d1Zv3pZxVMEhOAInwAUXoAluQAu0AQaP4Bm8gjfryXqx3q2PWWvFKmf2wR9Znz+K1Jej</latexit>Dsrc

NASA/ESA

NASAESA/Hubble & NASA

of 392022�NRGW�Summer�SchoolKyungmin Kim

• Motivation

• If GWs propagate around heavy mass systems, they can be lensed like EM waves.

• If the time delay of two lensed images is short enough (~ms), the images would be

superposed.

ML for Identification of Lensed GWs

32

Unlensed Lensed

• Thin lens approximation

• Strain amplitude of lensed

GW in frequency domain 
 
 
where F(f) is the amplification
factor which determines the
lensing signatures, e.g.,
magnification of lensed
signals and time delays
between them.

hL(f) = F(f)h(f)

KK+, ApJ  
915 (2021) 2, 119

Lens

Source

δ

hI
l

hII
l

Source
 plane

Len
s p

lane

Observer

<latexit sha1_base64="0hWvbK9VJoHIZeFDxB70iplqqw8=">AAACAnicbZDLSsNAFIYn9VbrLepK3AwWwVVJRNRlQReupIK9QBvCZDpph85MwsxEKCG48VXcuFDErU/hzrdxkmahrT8MfPznHOacP4gZVdpxvq3K0vLK6lp1vbaxubW9Y+/udVSUSEzaOGKR7AVIEUYFaWuqGenFkiAeMNINJld5vftApKKRuNfTmHgcjQQNKUbaWL59MOBIjzFi6XXmFyx5yohQmW/XnYZTCC6CW0IdlGr59tdgGOGEE6ExQ0r1XSfWXoqkppiRrDZIFIkRnqAR6RsUiBPlpcUJGTw2zhCGkTRPaFi4vydSxJWa8sB05kuq+Vpu/lfrJzq89FIq4kQTgWcfhQmDOoJ5HnBIJcGaTQ0gLKnZFeIxkghrk1rNhODOn7wIndOGe95w787qzdsyjio4BEfgBLjgAjTBDWiBNsDgETyDV/BmPVkv1rv1MWutWOXMPvgj6/MHWnuYFw==</latexit>Dlens
<latexit sha1_base64="0xzrHGTbvM1OpNADkkm5hCcgJ64=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYBFclEVGXBV24kgr2Am0Ik+mkHTozCTMToYS48VXcuFDErW/hzrdxkmahrT8MfPznHOacP4gZVdpxvq3K0vLK6lp1vbaxubW9Y+/udVSUSEzaOGKR7AVIEUYFaWuqGenFkiAeMNINJld5vftApKKRuNfTmHgcjQQNKUbaWL59MOBIjzFi6XXmFyx5qiTOfLvuNJxCcBHcEuqgVMu3vwbDCCecCI0ZUqrvOrH2UiQ1xYxktUGiSIzwBI1I36BAnCgvLS7I4LFxhjCMpHlCw8L9PZEirtSUB6Yz31HN13Lzv1o/0eGll1IRJ5oIPPsoTBjUEczjgEMqCdZsagBhSc2uEI+RRFib0GomBHf+5EXonDbc84Z7d1Zv3pZxVMEhOAInwAUXoAluQAu0AQaP4Bm8gjfryXqx3q2PWWvFKmf2wR9Znz+K1Jej</latexit>Dsrc

NASA/ESA

NASAESA/Hubble & NASA

of 392022�NRGW�Summer�SchoolKyungmin Kim 33

ML for Identification of Lensed GWs
• Input data: spectrogram using IMRPhenomPv2 and constant-Q transform

• unlensed+non-precessing (),  
unlensed+precessing (), and  
lensed+non-precessing ()

• Poin Mass model and  
Singular Isothermal Sphere 
model

• Parameters

• m1, m2: 5—55
• DL: 10—1000Mpc

• DLS: 10—1000Mpc

• ML: —
• : —0.5pc

• Noise: aLIGO’s DetHighPower model

• 10 SNR 50 

(c.f. 23.6 for BBHs in GWTC-1)

• # of samples: 45,000 for each type and each lens model

• training (80%), validation (10%), and evaluation (10%)

UN
UP

L

M⊙

103 105M⊙
δ 10−6

≤ ≤
≤

↖︎ ;

;

m1 = m2 = 20M⊙ ML = 104M⊙
DS = 1Gpc DL = 800Mpc

Unlensed + Noise
(SNR ≃ 10)

Unlensed + Noise
(SNR ≃ 30)

Unlensed + Noise
(SNR ≃ 50)

Lensed + Noise
(SNR ≃ 10)

Lensed + Noise
(SNR ≃ 30)

Lensed + Noise
(SNR ≃ 50)

KK+, ApJ  
915 (2021) 2, 119

of 392022�NRGW�Winter�SchoolKyungmin Kim

ML for Identification of Lensed GWs

34

Regression for Parameter Estimation

Classification

Chirp mass of source Lens mass

0 10 20 30 40 50
True Mc

s

°4

°2

0

2

4

R
es

id
u
al

of
M

c s

0.01

0.02

0.03

0.04

d
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0
True ML £105

°4

°2

0

2

4

R
es

id
u
a
l
of

M
L

£104

1

2

3

4

5

d
en

si
ty

£10°9

Redshift of source Redshift of Lens

0.0 0.1 0.2 0.3 0.4 0.5
True zs

°0.2

°0.1

0.0

0.1

0.2

R
es

id
u
al

of
z s

10

20

30

40

d
en

si
ty

0.00 0.05 0.10 0.15 0.20
True zL

°0.10

°0.05

0.00

0.05

0.10

R
es

id
u
a
l
of

z L

10

20

30

40

50

60

70

d
en

si
ty

KK+, ApJ  
915 (2021) 2, 119

of 392022�NRGW�Summer�SchoolKyungmin Kim 35

Search for Lensed GWs in GWTC-1 and -2
• Search for beating patterns might be occurred by lenses with masses of  

 from spectrograms of BBH signals with deep learning (DL)

• Revisit the BBH events already analyzed in previous lensing papers [Hannuksela+ (2019) &

Abbott+ (2021)]

• Use public open data from GWOSC

• DL-based method for searching such beating patterns [Kim+ (2021)]

• From the primary classification, only GW190707_093326 is classified as lensed out of 46 events.

• No visually identifiable beating patterns

• with 90% C.I. (from bootstrapping)

•

• The uncertainty of contains where that  
accepting the unlensed hypothesis being true.

• c.f., disfavoring lensed hypothesis  

[Abbott+ (2021)]

• Conclude the GW signal of this event is likely an  

unlensed one.

103 − 105M⊙

rL = 0.984+0.012
−0.342

0 ≲ p ≲ 0.1
p p > 0.05

ℬML
U = -0.4

KK+, arXiv:2206.08234

of 39UNIST�Physics�Seminar�Series�on�Sep�15,�2021Kyungmin Kim

ML for Low-Latency GW Search

36

• Motivation

• Low-latency search (detection) pipeline: real-time (online) search pipeline which

produce candidate event triggers within .

• c.f., offline search takes
• GstLAL inspiral pipeline (Messick+ ’17) 

• Similar to the previous work,  
we assume the output of  
machine learning algorithms  
can be used to rank candidate  
events of low-latency pipeline.

• In this work, we consider 

random forest and  
neural networks.

𝒪(min)
𝒪(hrs) − 𝒪(days)

GW Data False Alarm RateMatched
Filtering

SNR
!2

…

Ranking
Events

ML

Low-Latency Detection Pipeline

Random Forest Neural Network

KK+, Phys. Rev. D  
101 (2020) 8, 083006

of 39UNIST�Physics�Seminar�Series�on�Sep�15,�2021Kyungmin Kim

Input Data

Training Evaluation

ML for Low-Latency GW Search

• Signal samples: mock data of GW150914 using GstLAL inspiral pipeline  
(~ 5 000 samples)

• Background samples: time-slide data around the GPS times of injections of the MDC 
 (~ 172 000 samples)

• Features: mass1, mass2, spin1z, spin2z, snr, and chisq (6 features)

• Train/Test data: 75%/25% of shuffled samples (no validation data)

• Time for training (w/ ~ 122 000 samples of
6 features) on MacBook Pro

• Random Forest (scikit-learn): 

~ 6—7 hrs for running GridSearchCV
with 288 combinations

• Neural Network (TensorFlow): 
~ 7—10 mins

• Time for evaluation (w/ ~ 45 000 samples of  
6 features): ~ O(100) ms

• Output: probabilistic prediction between  
0 and 1 → rank

• For the performance test of the evaluation result,  
3 figure-of-merits were used:

• Confusion matrix,

• 2-D histogram: ln L vs. rank of ML,

• Receiver Operation Characteristic (ROC) curve.

37

KK+, Phys. Rev. D  
101 (2020) 8, 083006

of 39UNIST�Physics�Seminar�Series�on�Sep�15,�2021Kyungmin Kim

ML for Low-Latency GW Search

38

Sensitivity in Detection Range

Performance Test on Classification

KK+, Phys. Rev. D  
101 (2020) 8, 083006

Remarks

• MLAs found high ranks candidate 

signals of GstLAL pipeline as well.

• MLAs found more candidates 

signals of lower signal-to-noise 
ratios than GstLAL pipeline.

• Similar performance on identifying 
noise samples.

Remarks

• MLAs could capture more candidate  

signals generated from sources at  
farther distances at lower false alarm  
rate than GstLAL pipeline.

of 392022�NRGW�Summer�SchoolKyungmin Kim 39

Summary
• We can do “astrophysics” with GW signals.

• We can understand more about the nature of astrophysical compact objects such as
black holes and neutron stars.

• We may confirm the physics known from EM observations more robustly.

• We may find new physics which haven’t seen from EM observations.

• Machine learning can be a useful tool for doing GW astrophysics.

• It enables us to identify various astrophysical phenomena.

• It can enhances the performance of data analysis.

➡ increase the number of detections/observations.

➡ help to understand those phenomena more deeper.

Kip Thorne said…

40

“Gravitational Waves will be  
a major tool for astronomy  

into the next century.”

September 30, 2016  
Public lecture @ CUHK, Hong Kong

Thank�you!�

