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The black hole image of M87* revealed by the EHT

.
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The black hole image of M87* revealed by the EHT

The black hole image reveals two key features.
1. A ring-like structure.
2. Brightness asymmetry (South is brighter).
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“Photon Ring” and “Black Hole Shadow”

Photon Trajectories

/

Event

Horizon —>
To observer

Credit: https://www.youtube.com/watch?v=zUyH3XhpLTo&ab_channel=Veritasium
Innermost stable P Y yrese -

circular orbit for photons

All the photons within projected distances of ~2.6 Rs from the center of the black hole will pass through
the event horizon (we cannot see those photons).
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“Photon Ring” and “Black Hole Shadow”

“Photon Ring”

Credit: Dr. Hung-Yi Pu (NTNU)

All the photons within projected distances of ~2.6 Rs from the center of the black hole will pass through
the event horizon (we cannot see those photons).
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“Photon Ring” and “Black Hole Shadow”

Black hole mass: 6.6€9 Msun (Gebhardt+ 2011)
Distance: 16.8 Mpc (Blakeslee+ 2009)

1 vas ~0.129 Rs

(42 £3)uas~(5.4+£0.3)Rs

v

Credit: Dr. Hung-Yi Pu (NTNU) < >

The observed ring-like structure is in good agreement with the prediction of GR.
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Doppler Boosting and Brightness Asymmetry

The M87 Jet

VLBA - 43 GHz
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The frame-dragging and Doppler boosting effects. v
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Doppler Boosting and Brightness Asymmetry

Semenov (2004)

Counter Jet
~ BH spin axis
Approachlng Jet

Black Hole
Rotation

The frame-dragging and Doppler boosting effects.
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Doppler Boosting and Brightness Asymmetry

The M87 Jet

VLA - 1.5 GHz
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The frame-dragging and Doppler boosting effects.
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Remaining Questions in the Black Hole Physics Community

Credit: Shiokawa
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The observed black hole images are produced by
the interplay between the followings:

1. Accretion Flows & Jets.
2. Magnetic Fields.
3. Curved Spacetime around the black hole.




Remaining Questions in the Black Hole Physics Community

Credit: Shiokawa
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The observed black hole images are produced by
the interplay between the followings:

2. Magnetic Fields.
3. Curved Spacetime around the black hole.

How do the particles in the accretion flows and
jets behave?
— Rhigh




Remaining Questions in the Black Hole Physics Community
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Sadowski+ 13

Low-Luminosity AGNs like M87 and Sgr A*
— Hot and Geometrically Thick Accretion Flows.
- Low Density & High Pressure
- Very weak Coulomb Collisions between the Ions
and Electrons

/6 P E— p as pma R ~ mligll at hlgh beta

R ~ 1 at low beta




Remaining Questions in the Black Hole Physics Community

D Rhigh T
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Accretion Disk
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Rhigh = 160
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Low-Luminosity AGNs like M87 and Sgr A*

— Hot and Geometrically Thick Accretion Flows.
- Low Density & High Pressure

- Very weak Coulomb Collisions between the Ions
and Electrons

ﬁ = Do /Proac R ~ Ruigh at high beta
: Sayane R ~ 1 at low beta




Remaining Questions in the Black Hole Physics Community

Credit: Shiokawa
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The observed black hole images are produced by
the interplay between the followings:

1. Accretion Flows & Jets.
3. Curved Spacetime around the black hole.
What is the configuration and strength of the

magnetic field around the black hole?
— SANE or MAD?




Remaining Questions in the Black Hole Physics Community

Standard and Normal Evolution Magnetically Arrested Disk
(SANE) (MAD)

Turbulent, weak, and toroidal-dominated B fields Ordered, strong, and poloidal-dominated B fields
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Remaining Questions in the Black Hole Physics Community
MAD

Ricarte+21
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Remaining Questions in the Black Hole Physics Community
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Remaining Questions in the Black Hole Physics Community

Credit: Shiokawa
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The observed black hole images are produced by
the interplay between the followings:

1. Accretion Flows & Jets.
2. Magnetic Fields.

What is the spin of the black hole?

_)a




GRMHD simulations + GRRT calculation

General Relativistic Magnetohydrodynamic Simulations General Relativistic Radiative Transfer Calculation

Credit: Nakamura+ Credit: Gammie+
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GRMHD simulations + GRRT calculation

Credit: the EHT collaboration
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— Which model can reproduce the observed black hole image?
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GRMHD simulations + GRRT calculation

GRMHD models
SANE, a, = -0.94, Rhigh = 80 SANE, a, = 0, Rhigh — 1) MAD, a, = 0.94, Rhigh =10
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— Which model can reproduce the observed black hole image?
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Modeling of the observed black hole image

2 3
From a GRMHD simulation library

consisting of 72,000 images, find the
models which meet the following criteria.

Total flux of 0.5 Jy.

The model must produce similar
images to the observed ones.

The radiative efficiency should not
be too high.

The model should not produce too
high X-ray flux.

The model should produce enough
jet power Pe: > 10%20rg s~

Conclusions: a detailed modeling of the black hole shadow image using the state-of-the-art GRMHD
simulation could not constrain the physical parameters tightly.
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The Linear Polarization of the M87* Black Hole

First M87 Event Horizon Telescope Results. VII. Polarization of the Ring (ApJL, 910, L12, 2021 March 20)
First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon
(ApJL, 910, L13, 2021 March 20)
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VLBI Polarimetry
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VLBI Polarimetry
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VLBI Polarimetry
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Modeling of the linear polarization image

Observation
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Modeling of the linear polarization image

Observation
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Modeling of the linear polarization image

Observation

B-field direction

Poloidal-dominated B Fields are preferred!
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Modeling of the linear polarization image

eht-imagingr
polsolver
LPCAL|

DMC

Themis

eht-imaging|
polsolver
LPCAL

DMC

Themis

April 11

—180 —160 —140 —120 —100
/B> (deg)

m=2 mode of azimuthal decomposition

“Net” frac. pol. ) .
of the polarized ring structure

Intensity-weighted frac. pol.

73rd Workshop on Gravitational Waves and Numerical Relativity



Modeling of the linear polarization image

Palumbo+ 2020

GRMHD simulations are most sensitive to the m=2 mode.
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Modeling of the linear polarization image

MAD, a+ =-0.94 MAD, a« = 0.0 MAD, a« = 0.94 SANE, a+ =-0.94 SANE, a«- =0.0 SANE, a« =0.94

Including relativistic effects (space-time
curvature, light bending), Faraday
rotation/conversion effects, etc.
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Modeling of the linear polarization image

Observation Model

W v
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Modeling of the linear polarization image
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Nearly all SANE models are rejected because they could not easily reproduce the observed twisted
polarization pattern and the relatively high (<~10%) fractional polarization.
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Modeling of the linear polarization image
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Nearly all SANE models are rejected because they could not easily reproduce the observed twisted
polarization pattern and the relatively high (<~10%) fractional polarization.
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Modeling of the linear polarization image
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Polarimetry puts a stronger constraint on the physical quantities. The Bondi accretion rate for M87 i1s
~ 01Mqg yr~ 1 (Russell+2015). The black hole accretion rate is much smaller than this, which implies
that a significant fraction of gas captured by the black hole’s gravity cannot reach the event horizon.
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MS87 1s MAD!

The data is consistent with the model that produces
powerful jets due to the rotation of the black hole and

Numerical simulation of Jet Formation (M. Nakamura) . .
strong, radial magnetic fields around the black hole.
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Circular Polarization Observations of the M87* black hole

Mechanisms for producing Circular Polarization near the vicinity of the black hole

1. Intrinsic Circular Polarization 2. Faraday Conversion

Linearly
polarized light

Circularly
polarized light

Quarter-wave
plate effect

https://astronomyonline.org/Stars/SupernovaRemnant.asp Sabatini & Lakhwani (2021)
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Circular Polarization Observations of the M87* black hole

DMC Themis Difmap
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Theory: most models naturally exhibit low
Observation: low levels of circular polarization Stokes V emission due to the finite EHT beam.

73rd Workshop on Gravitational Waves and Numerical Relativity



Annual Evolution of the M87* Ring Structure

2017 April 11 2018 April 21

0.01 ly
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Annual Evolution of the M87* Ring Structure

Credit: Hung-Yi Pu (NTNU)

Variability due to
turbulence in the
accretion flows?

Our theory paper has just been accepted for publication in A&A. Please stay tuned for the press release!
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Summary

Observation

i

The state-of-the-art GRMHD simulations + GRRT calculations enable us to directly compare the observed
black hole images with the models. The conclusions derived from the modeling are:
- The black hole spin: The M87 black hole is highly likely spinning (Ja| > 0).
- The magnetic field configuration: M87 is highly likely MAD, surrounded by large-scale poloidal B fields.
- The electron-to-ion temperature ratio: is still very uncertain and not well understood.
— Spectral Information could be a key to understand this physics.
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Observing the Supermassive Black Hole
at the Center of M&87 using GMVA+ALMA

MS87 - GMVA+ALMA 2018 EHT+ALMA 2017

1.3 mm
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5 I
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Jongho Park (Kyung Hee University) on behalf of
the EHT Collaboration and the GMVA-M&7 Collaboration




“Photon Ring” and “Black Hole Shadow”

Black hole mass: 6.6€9 Msun (Gebhardt+ 2011)
Distance: 16.8 Mpc (Blakeslee+ 2009)

1 vas ~0.129 Rs

(42 £3)uas~(5.4+£0.3)Rs

v

Credit: Dr. Hung-Yi Pu (NTNU) < >

The observed ring-like structure is in good agreement with the prediction of GR.
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What constitutes the observed ring-like structure?

Black Hole Shadow

Photon Ring

=

Full Image Q

Black Hole
Image Credit: Wong & Johnson Credit: the EHT collaboration




What constitutes the observed ring-like structure?

Black Hole Shadow

Photon Ring

“Gastrophysical”
Ring (Accretion, Jet)

Photon Ring

=

Full Image Q

Black Hole
Image Credit: Wong & Johnson Credit: the EHT collaboration




The Global Millimeter VLBI Array (GMVA) at 3.5 mm
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The Global Millimeter VLBI Array (GMVA) at 3.5 mm

M87 VLBA 43 GHz
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The Global Millimeter VLBI Array (GMVA) at 3.5 mm

M87 VLBA 43 GHz
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The Global Millimeter VLBI Array (GMVA) at 3.5 mm
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The Global Millimeter VLBI Array (GMVA) at 3.5 mm
GMVA+ALMA+GLT

- The longest baselines determine the angular resolution.
- The (u,v) coverage determines the image fidelity.




GMVA+ALMA+GLT observation of M87 in 2018
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Aring-like accretion structure in M87
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GMVA+ALMA+GLT observation of M87 in 2018
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Aring-like accretion structure in M87
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GMVA+ALMA+GLT observation of M87 in 2018
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GMVA+ALMA+GLT observation of M87 in 2018
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GMVA+ALMA+GLT observation of M87 in 2018

Log scale

The ring size at 3.5 mm is ~50% larger than that at 1.3 mm.
The 3.5 mm ring is more symmetric than the 1.3 mm ring.
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“Photon ring” and “Black Hole Shadow”
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What constitutes the observed ring-like structure?

The ring-like structure is believed to originate
from synchrotron emission in the plasma around
the black hole.

Accretion Flows (thermal synchrotron)
Jets (Nonthermal synchrotron)

Photon capture at the Event Horizon
(geometric effect)

Credit: Shiokawa




What constitutes the observed ring-like structure?
Credit: Pu & Nakamura

Same GRMHD model but with different post-processing

Disk-dominated Jet-dominated

Jet

Base \ '

))\ J)

/ = Accretion \
Disk

Photon Ring Photon Ring

- The photon ring emission + outer disk emission become more dominant in the disk-dominated model.
- The photon ring emission + forward jet base emission become more dominant in the jet-dominated
model.




What constitutes the observed ring-like structure?

Observation Disk-dominated Jet-dominated
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At 230 GHz, the photon ring emission is dominant in both models.
At 86 GHz, the innermost accretion disk emission and the photon ring emission become optically thick
in the disk model. The forward jet base emission is dominant in the jet model.




What constitutes the observed ring-like structure?
Credit: Pu & Nakamura

Same GRMHD model but with different post-processing
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- The photon ring emission + outer disk emission become more dominant in the disk-dominated model.
- The photon ring emission + forward jet base emission become more dominant in the jet-dominated
model.




What constitutes the observed ring-like structure?
Credit: Pu & Nakamura

Same GRMHD model but with different post-processing

At lower frequencies..

Disk-dominated Jet-dominated

P N

Photon Ring (frequency Photon Ring

(frequency independent)

dependent)

- The photon ring emission + outer disk emission become more dominant in the disk-dominated model.
- The photon ring emission + forward jet base emission become more dominant in the jet-dominated
model.




What constitutes the observed ring-like structure?
Credit: Pu & Nakamura

Same GRMHD model but with different post-processing

At higher frequencies..

Disk-dominated Jet-dominated

Jet

Base \ '

)\ <

/ — Accretion \
Disk

(frequency

dependent)

(frequency independent)

- The photon ring emission + outer disk emission become more dominant in the disk-dominated model.
- The photon ring emission + forward jet base emission become more dominant in the jet-dominated
model.




What constitutes the observed ring-like structure?

Observation Jet-dominated
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The ring-like structure revealed by GMVA+ALMA at 86 GHz indicates the accretion structure that
was not very evident in the EHT 230 GHz images.
We don’t see clear brightness asymmetry as the emission is dominated by the outer accretion disk.
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Future Prospects: the M87 black hole images in multiple colors

GMVA+ALMA
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(PI: J. Park)
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Future Prospects: the M87 black hole movie obtained by the next-generation EHT

ALMAWAPEX
(o
LCOAF A

SGO} existing site
‘ planned site
NGEHT Phase 1
NgEHT Phase 2

The ngEHT project (https://www.ngeht.org) Johnson et al. 2023




Future Prospects: the M87 black hole movie obtained by the next-generation EHT
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Simulated EHT2017 170 pas ngEHT

Blackburn et al. (2019)




Future Prospects: the M87 black hole movie obtained by the next-generation EHT

The M&7 movie created based on GRMHD simulations
Credit: the ngEHT collaboration




Future Prospects: the M87 black hole images in multiple colors
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Issaoun et al. (2023)

Credit: CK Chan




Future Prospects: the M87 black hole images in multiple colors

129 GHz

Receiver plate

43 GHz

mirrors
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LowPass
Filters
—

Beam from the
sub-reflector

A bottleneck of high frequency VLBI
observations is a short atmospheric coherence
time.

We can dramatically increase the coherence time
using simultaneous multi-frequency observations.
The KVN has demonstrated the power of this
system at 22/43/86/129 GHz, and KASI is
developing a new system for 86/230/345 GHz
(submm-Compact Triple Receiver; submm-CTR;
PI: o] A ¢)




The Black Hole Explorer (BHEX)
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Summary

M87 - GMVA+ALMA 2018 EHT+ALMA 2017

3.5 mm 1.3 mm

») 4

+—> +—>
8.4 Rs 5.2 Rs

CLEAN - log scale SMILI — linear scale linear scale

We revealed a ring-like structure at the center of M87 at 3.5 mm with the GMVA+ALMA.

The observed size of the ring at 3.5 mm is ~50% larger than that of the EHT ring at 1.3 mm.

The discrepancy can be reconciled if (1) the photon ring emission is dominant at 1.3 mm and (ii) the photon
ring emission is optically thick and the outer accretion disk emission is more dominant at 3.5 mm.

We plan to extensively investigate the M87 black hole and jet in the frequency and time domain in the future,
and KASI and Korea will play a critical role.




Backup Slides

73rd Workshop on Gravitational Waves and Numerical Relativity
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73rd Workshop on Gravitational Waves and Numerical Relativity




Annual Evolution of the M87* Ring Structure

DIFMAP eht-imaging SMILI THEMIS Comrade  Hybrid Themage xs-ringauss mF-ring
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What constitutes the observed ring-like structure?

Black Hole Shadow

Photon Ring

=

Full Image Q

Black Hole
Image Credit: Wong & Johnson Credit: the EHT collaboration




What constitutes the observed ring-like structure?

The ring-like structure is believed to originate
from synchrotron emission in the plasma around
the black hole.

Accretion Flows (thermal synchrotron)
Jets (Nonthermal synchrotron)

Photon capture at the Event Horizon
(geometric effect)

Credit: Shiokawa




Future Prospects: the M87 black hole images in multiple colors
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Future Prospects: Testing the Jet Launching Mechanism for M87 through Monitoring Observations.

Real Image
Simulation Images

Ground Truth With JCMT Without JCMT

O
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Reconstructing a ring-like structure can be greatly affected by the (u,v)-coverage.
The JCMT, providing high SNR very long baselines along the EW direction, plays a crucial role in
accurately reconstructing the structure.




What constitutes the observed ring-like structure?

Black Hole Shadow

Photon Ring
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Full Image Q

Black Hole
Image Credit: Wong & Johnson

Credit; the EHT collaboration
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resolve

Jong-seo Kim et al. (2024)
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GVA Observations
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Imaging & Deconvolution
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dirty image

Research Talk at University of Mississippi - 2024 November 21




Imaging & Deconvolution

Dirty Beam and Dirty Image
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“dirty image” _ Slide taken from NRAO Synthesis
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Imaging & Deconvolution

V(u,v)S(u,v) SR TP(1,m)

How to derive T(l, m)?
T(l,m)* s(l,m) =T"(l,m)

1. Deconvolution using s(l, m) 2. Forward “Modeling”
-  CLEAN (Hogbom 1974) - Regularized Maximum Likelihood
- Assume that the source consists of (RML) method
a sum of point sources - Construct model images and
- Conventional Method directly fit them to the visibilities
- Successful but Limitation - “Super-resolution” 1s possible

- Have not been extensively tested.

Research Talk at University of Mississippi - 2024 November 21



Imaging & Deconvolution

The EHT Collaboration et al. (2024)
DIFMAP THEMIS Comrade

“natural” resolution

after convolution

CLEAN RML Bayesian
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Very Long Baseline Interferometry & Event Horizon Telescope
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Credit: https://www.sciencedirect.com/topics/earth-and-planetary-sciences/radio-astronomy

Interference of radio signals received at two separated telescopes allows us to capture the source
structure at a high resolution. The Fourier transform of the correlated signals for different baseline
vectors (on the u-v plane) can provide a source image.
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Very Long Baseline Interferometry & Event Horizon Telescope

meta-data data reduction
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Very long baseline interferometry (VLBI) is a radio interferometer of telescopes separated by very long
distances. One has to save the voltage data to hard drives at each station, bring the disks to the same

place, and compute correlations (interference) of the signals.




How to remove instrumental signals from the data?
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and softwares are consistent with each other.
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Linear Polarization Quantities
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