Imaging the Supermassive Black Hole at the Heart of M87 using Global Millimeter VLBI

November 27, 2024 Presenter: Jongho Park (Kyung Hee University)

Part I: What did we learn about black hole physics from the EHT observations?

Presenter: Jongho Park (Kyung Hee University)

Part II: Observing the supermassive black hole at the center of M87 using GMVA+ALMA

Presenter: Jongho Park (Kyung Hee University)

The black hole image of M87* revealed by the EHT

The Event Horizon Telescope

James Clerk Maxwell Telescope

Large Millimeter Telescope SIERRA NEGRA, MEXICO

Submillimeter Telescope MOUNT GRAHAM, ARIZONA

South Pole Telescope SOUTH POLE STATION

The Greenland Telescope THULE AIR BASE, GREENLAND, DENMARK

Kitt Peak 12-meter Telescope KITT PEAK, ARIZONA, USA

NOEMA Observatory PLATEAU DE BURE, FRANCE

Observing in 2020

The observing wavelength $\lambda = 1.3$ mm. The maximum baseline length is $B_{max} = 11,000$ km The angular resolution is ~ 20 µas

The black hole image of M87* revealed by the EHT

The black hole image reveals two key features.

- 1. A ring-like structure.
- 2. Brightness asymmetry (South is brighter).

All the photons within projected distances of ~2.6 Rs from the center of the black hole will pass through the event horizon (we cannot see those photons).

"Photon Ring" and "Black Hole Shadow"

All the photons within projected distances of ~2.6 Rs from the center of the black hole will pass through the event horizon (we cannot see those photons).

"Photon Ring" and "Black Hole Shadow"

Black hole mass: 6.6e9 Msun (Gebhardt+ 2011) Distance: 16.8 Mpc (Blakeslee+ 2009) 1 uas ~ 0.129 Rs (42 ± 3) uas ~ (5.4 ± 0.3) Rs

The observed ring-like structure is in good agreement with the prediction of GR.

Doppler Boosting and Brightness Asymmetry

The frame-dragging and Doppler boosting effects.

The M87 Jet VLA – 1.5 GHz VLBA – 43 GHz 10 arcseconds 3000 light years 0.01 arcseconds 3 light years GMVA – 86 GHz EHT - 230 GHz 0.001 arcseconds 0.3 light years 0.00001 arcseconds 0.003 light years

Doppler Boosting and Brightness Asymmetry

Semenov (2004)

The frame-dragging and Doppler boosting effects.

Doppler Boosting and Brightness Asymmetry

The frame-dragging and Doppler boosting effects.

Goddi et al. 2019, The Messenger, 177, 2. T Collaboration/M, Kommesser/ESO

Credit: Shiokawa

73rd Workshop on Gravitational Waves and Numerical Relativity

The observed black hole images are produced by the interplay between the followings:

- 1. Accretion Flows & Jets.
- 2. Magnetic Fields.
- 3. Curved Spacetime around the black hole.

Credit: Shiokawa

73rd Workshop on Gravitational Waves and Numerical Relativity

The observed black hole images are produced by the interplay between the followings:

1. Accretion Flows & Jets.

- 2. Magnetic Fields.
- 3. Curved Spacetime around the black hole.

How do the particles in the accretion flows and jets behave?

 $\rightarrow R_{\text{high}}$

Low-Luminosity AGNs like M87 and Sgr A*

- \rightarrow Hot and Geometrically Thick Accretion Flows.
 - Low Density & High Pressure
 - Very weak Coulomb Collisions between the Ions and Electrons

$$R \equiv T_i/T_e$$

$$R = R_{\text{high}} \frac{\beta_p^2}{1 + \beta_p^2} + \frac{1}{1 + \beta_p^2}$$

$$\beta_{\rm p} \equiv p_{\rm gas}/p_{\rm mag}$$

 $R \sim R_{high}$ at high beta $R \sim 1$ at low beta

Electron T in the Accretion Disk

Jet Emission becomes prominent Low-Luminosity AGNs like M87 and Sgr A*

- \rightarrow Hot and Geometrically Thick Accretion Flows.
 - Low Density & High Pressure
 - Very weak Coulomb Collisions between the Ions and Electrons

$$R \equiv T_i/T_e$$
$$R = R_{\text{high}} \frac{\beta_p^2}{1 + \beta_p^2} + \frac{1}{1 + \beta_p^2}$$

$$\beta_{\rm p} \equiv p_{\rm gas}/p_{\rm mag}$$

 $R \sim R_{high}$ at high beta $R \sim 1$ at low beta

Credit: Shiokawa

73rd Workshop on Gravitational Waves and Numerical Relativity

The observed black hole images are produced by the interplay between the followings:

- 1. Accretion Flows & Jets.
- 2. Magnetic Fields.
- 3. Curved Spacetime around the black hole.

What is the configuration and strength of the magnetic field around the black hole? \rightarrow SANE or MAD?

Standard and Normal Evolution (SANE)

Turbulent, weak, and toroidal-dominated B fields

Magnetically Arrested Disk (MAD)

Ordered, strong, and poloidal-dominated B fields

Credit: Shiokawa

73rd Workshop on Gravitational Waves and Numerical Relativity

The observed black hole images are produced by the interplay between the followings:

- 1. Accretion Flows & Jets.
- 2. Magnetic Fields.
- 3. Curved Spacetime around the black hole.

What is the spin of the black hole? $\rightarrow \alpha$

GRMHD simulations + **GRRT** calculation

General Relativistic Magnetohydrodynamic Simulations

Particle Density, Temperature, Velocity, Magnetic Fields in each cell

General Relativistic Radiative Transfer Calculation

Image of the black hole

GRMHD simulations + **GRRT** calculation

Credit: the EHT collaboration

 \rightarrow Which model can reproduce the observed black hole image?

GRMHD simulations + **GRRT** calculation

 \rightarrow Which model can reproduce the observed black hole image?

Modeling of the observed black hole image

				5	–	5	
Flux ^a	$a_*{}^{\mathbf{b}}$	$R_{\rm high}^{\rm c}$	AIS ^d	$\epsilon^{\rm e}$	$L_{\rm X}^{\rm f}$	$P_{\rm jet}^{\rm g}$	
SANE	-0.94	1	Fail	Pass	Pass	Pass	Fail
SANE	-0.94	10	Pass	Pass	Pass	Pass	Pass
SANE	-0.94	20	Pass	Pass	Pass	Pass	Pass
SANE	-0.94	40	Pass	Pass	Pass	Pass	Pass
SANE	-0.94	80	Pass	Pass	Pass	Pass	Pass
SANE	-0.94	160	Fail	Pass	Pass	Pass	Fail
SANE	-0.5	1	Pass	Pass	Fail	Fail	Fail
SANE	-0.5	10	Pass	Pass	Fail	Fail	Fail
SANE	-0.5	20	Pass	Pass	Pass	Fail	Fail
SANE	-0.5	40	Pass	Pass	Pass	Fail	Fail
SANE	-0.5	80	Fail	Pass	Pass	Fail	Fail
SANE	-0.5	160	Pass	Pass	Pass	Fail	Fail
SANE	0	1	Pass	Pass	Pass	Fail	Fail
SANE	0	10	Pass	Pass	Pass	Fail	Fail

From a GRMHD simulation library consisting of 72,000 images, find the models which meet the following criteria.

- 1. Total flux of 0.5 Jy.
- 2. The model must produce similar images to the observed ones.
 - 3. The radiative efficiency should not be too high.
- 4. The model should not produce too high X-ray flux.
- 5. The model should produce enough jet power $P_{\rm jet} \ge 10^{42} {\rm erg \ s^{-1}}$.

Conclusions: a detailed modeling of the black hole shadow image using the state-of-the-art GRMHD simulation could not constrain the physical parameters tightly.

	Rejection	Table										
h	AIS ^d	ϵ^{e}	Lx ^r	Pjet ⁸		he of	oserv	ed bl	ack	hole	ima	Ø
1	Fail	Pass	Pass	Pass	Fail							6
0	Pass	Pass	Pass	Pass	Pass							
0	Pass	Pass	Pass	Pass	Pass							
0	Pass	Pass	Pass	Pass	Pass	2	3	Δ	5			
1	Pars	Pass	Pass	Pass	Fail		5		5		T	
0	Pass	Pass	Fail	Fail	Fail						Fron	n a
0	Pass	Pass	Pass	Fail	Fail						1101	11 04
0	Pass	Pass	Pass	Fail	Fail	AIC	e	r f	рg		0000	int
0	Pass	Pass	Pass	Fail	Fail	AIS	ϵ	$L_{\rm X}$	P_{jet}		COIIS	ISL
1	Pass	Pass	Pass	Fail	Fail							1
0	Pass	Pass	Pass	Fail	Fail	Fail	Door	Doco	Doco	Fail	mod	els
0	Pass	Pass	Fail	Fail	Fail	гап	Pass	Pass	Pass	гап	mod	
0	Pass	Pass	Pass	Fail	Fail	Dage	Doce	Doce	Dage	Dass		
0	Pass	Pass	Pass	Fail	Fail	r ass	r ass	1 ass	r ass	r ass		
1	Pass	Pass	Pass	Fail	Fail	Pass	Pass	Pass	Dass	Pass		
0	Pass	Pass	Pass	Fail	Fail	1 455	1 455	1 455	1 ass	1 455	1	
0	Pass	Pass	Pass	Fail	Fail	Pass	Pass	Pass	Pass	Pass	1.	1
0	Pass	Pass	Pass	Fail	Fail	1 455	1 0.55	1 455	1 455	1 455	~	
0	Pass	Pass	Pass	Fail	Fail	Pass	Pass	Pass	Pass	Pass	2.	
1	Pass	Fail	Pass	Fail	Fail	1 455	1 455	1 400	1 455	1 400		
0	Pass	Pass	Pass	Fail	Fail	Fail	Pass	Pass	Pass	Fail		•
0	Pass	Pass	Pass	Fail	Fail	1 411	1 455	1 400	1 400	1 411		
0	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Fail	Fail	Fail		
0	Pass	Pass	Pass	Pass	Pass	_	_				3	
0	Fail	Pan	Pass	Pass	Fail	Pass	Pass	Fail	Fail	Fail	5.	1
0	Fail	Pass	Pass	Pass	Fail	-	-	-				1-
0	Fail	Pass	Pass	Pass	Fail	Pass	Pass	Pass	Fail	Fail		b
0	Fail	Pass	Pass	Pass	Fail	D	D	D	T '1	T '1		
1	Pass	Fail	Pass	Fail	Fail	Pass	Pass	Pass	Fail	Fail	Δ	
0	Pass	Pass	Pass	Fail	Fail	T '1	р	ъ	E '1	T '1	т.	1
0	Pass	Pass	Pass	Pass	Pass	Fail	Pass	Pass	Fail	Fail		1
0	Pass	Pass	Pass	Pass	Pass	Deee	Deee	Daga	$\mathbf{E}_{\mathbf{a}}$:1	$\mathbf{E}_{\mathbf{a}}$:1		h
0	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Fall	Fall		
1	Pass	Fail	Pass	Fail	Fail	Dece	Door	Dece	Eoi1	Fail	5	
0	Pass	Pass	Pass	Fail	Fail	Fa88	F 888	r ass	ган	гап	J.	
0	Pass	Pass	Pass	Fail	Fail	Dass	Dass	Dass	Fail	Fail		
0	Pass	Pass	Pass	Fail	Fail	F 855	F 855	r ass	Fall	Fall		16
0	Pass	Pass	Pass	Fail	Fail							J
1	Pass	Fail	Pass	Fail	Fail							
0	Pass	Pass	Pass	Pass	Pass							
0	Dass	Dage	Dass	Dage	Dass							

Table 2

SANE

SANE

SANE

SANE

SANE

SANE

SANE

SANE

SANE

SANE SANE

SANE SANE

SANE SANE SANE SANE SANE SANE

SANE

SANE

SANE

SANE

SANE

SANE

SANE

SANE

SANE

SANE

SANE

MAD

MAD

MAD

MAD

MAD

MAD

MAD

MAD MAD

MAD

MAD MAD

MAD

MAD MAD

MAD MAD MAD MAD MAD

MAD

MAD

MAD

MAD

MAD

MAD

MAD

MAD

MAD

MAD

-0.94

-0.94

-0.94

-0.94

-0.94

-0.94

-0.5

-0.5

-0.5

-0.5

+0.5

+0.5

+0.5

 ± 0.5

+0.5

+0.94

+0.94

 ± 0.94

+0.94

 ± 0.94

+0.94

-0.94

-0.94

-0.94

-0.94

-0.94

-0.94

-0.5

-0.5

-0.5

+0.5

+0.5

+0.5

+0.5

+0.5

+0.94

+0.94

+0.94

+0.94

+0.94

+0.94

80

160

10

20

160

Pass

Fail

Fail

Pass

Pass

Pass

Pass

Pass

Pass

Fail

Pass

Fail

Pass

Pass

Pass

Pass

From a GRMHD simulation library consisting of 72,000 images, find the models which meet the following criteria.

- 1. Total flux of 0.5 Jy.
- The model must produce similar 2. images to the observed ones.
 - 3. The radiative efficiency should not be too high.
- 4. The model should not produce too high X-ray flux.
- The model should produce enough 5. jet power $P_{\text{jet}} \ge 10^{42} \text{erg s}^{-1}$.

hodeling of the black hole shadow image using the state-of-the-art GRMHD strain the physical parameters tightly.

Waves and Numerical Relativity

The Linear Polarization of the M87* Black Hole

First M87 Event Horizon Telescope Results. VII. Polarization of the Ring (ApJL, 910, L12, 2021 March 20) First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon (ApJL, 910, L13, 2021 March 20)

Paper VII writing team

Monika Moscibrodzka (Radboud)

Andrew Chael (Princeton)

Sara Issaoun (Radboud)

Jongho Park* (ASIAA)

*: Early Career Awards

Maciel Wielgus (CfA) Dom I

Ivan Marti-Vidal* (Univ. of Valencia) Avery Broderick (Perimeter)

John Wardle (Brandeis Univ.)

VLBI Polarimetry

	April 5	April 6	April 10	April 11	-0.20
eht-imaging	50 дая	50 gas	50 µas	50 µas	0.30 0.25 <u>[<i>m</i>]</u> 0.15 0.10 0.10 0.05 <u>[<i>m</i>]</u> 0.00 0.00
polsolve	50 <i>J</i> Ass	бо µаз	50 µas	Орис 50 µлs	0.30 0.25 0.25 0.15 0.10 0.10 0.10 0.05 0.00
LPCAL	50 Jan	-50 µая	50 µas	50 µns	0.30 0.25 [<i>m</i>] 0.20 [<i>m</i>] 0.15 [<i>m</i>] 0.10 [<i>m</i>] 0.00 [<i>m</i>] 0.00 [<i>m</i>]
DMC	50 AAS	50 µas	50 µms	50 µas	0.30 0.25 [<i>m</i>] 0.20 [<i>m</i>] 0.15 durization 0.10 0.05 0.00
THEMIS	50 дая	50 µm	50 µm	50 µms	0.30 0.25 [<i>m</i>] 0.15 [<i>m</i>] 0.10 [<i>m</i>] 0.05 [<i>m</i>] 0.00

VLBI Polarimetry

Leader of this team

VLBI Polarimetry

Observation

Observation

Observation

Poloidal-dominated B Fields are preferred!

We obtained four quantities and define "conservative" ranges to be compared with the model.

$$|m|_{\text{net}} = \frac{\sqrt{\left(\sum_{i} Q_{i}\right)^{2} + \left(\sum_{i} U_{i}\right)^{2}}}{\sum_{i} I_{i}} \qquad \langle |m| \rangle = \frac{\sum_{i} \sqrt{Q_{i}^{2} + U_{i}^{2}}}{\sum_{i} I_{i}} \qquad \beta_{2} = \frac{1}{I_{\text{ring}}} \int_{\rho_{\text{min}}}^{\rho_{\text{max}}} \int_{0}^{2\pi} P(\rho, \varphi) e^{-2i\varphi} \rho d\varphi d\rho$$

"Net" frac. pol. Intensity-weighted frac. pol. Intensity-weighted frac. pol.

Palumbo+ 2020

GRMHD simulations are most sensitive to the m=2 mode.

Including relativistic effects (space-time curvature, light bending), Faraday rotation/conversion effects, etc.

Observation

Model

Nearly all SANE models are rejected because they could not easily reproduce the observed twisted polarization pattern and the relatively high (<~10%) fractional polarization.

Nearly all SANE models are rejected because they could not easily reproduce the observed twisted polarization pattern and the relatively high (<~10%) fractional polarization.

Polarimetry puts a stronger constraint on the physical quantities. The Bondi accretion rate for M87 is $\sim 0.1 M_{\odot} \text{ yr}^{-1}$ (Russell+2015). The black hole accretion rate is much smaller than this, which implies that a significant fraction of gas captured by the black hole's gravity cannot reach the event horizon.

M87 is MAD!

The data is consistent with the model that produces powerful jets due to the rotation of the black hole and strong, radial magnetic fields around the black hole.

Circular Polarization Observations of the M87* black hole

Mechanisms for producing Circular Polarization near the vicinity of the black hole

1. Intrinsic Circular Polarization

https://astronomyonline.org/Stars/SupernovaRemnant.asp

2. Faraday Conversion

Sabatini & Lakhwani (2021)

Circular Polarization Observations of the M87* black hole

Observation: low levels of circular polarization

73rd Workshop on Gravitational Waves and Numerical Relativity

Theory: most models naturally exhibit low Stokes V emission due to the finite EHT beam.

Annual Evolution of the M87* Ring Structure

2017 April 11 2018 April 21

0.01 ly

Annual Evolution of the M87* Ring Structure

Credit: Hung-Yi Pu (NTNU)

Our theory paper has just been accepted for publication in A&A. Please stay tuned for the press release!

Summary

The state-of-the-art GRMHD simulations + GRRT calculations enable us to directly compare the observed black hole images with the models. The conclusions derived from the modeling are:

- The black hole spin: The M87 black hole is highly likely spinning ($|\alpha| > 0$).
- The magnetic field configuration: M87 is highly likely MAD, surrounded by large-scale poloidal B fields.
- The electron-to-ion temperature ratio: is still very uncertain and not well understood.
 - \rightarrow Spectral Information could be a key to understand this physics.

Observing the Supermassive Black Hole at the Center of M87 using GMVA+ALMA

Jongho Park (Kyung Hee University) on behalf of the EHT Collaboration and the GMVA-M87 Collaboration

"Photon Ring" and "Black Hole Shadow"

Black hole mass: 6.6e9 Msun (Gebhardt+ 2011) Distance: 16.8 Mpc (Blakeslee+ 2009) 1 uas ~ 0.129 Rs (42 ± 3) uas ~ (5.4 ± 0.3) Rs

The observed ring-like structure is in good agreement with the prediction of GR.

EHT, 1.3 mm, Angular resolution: ~20 μas

GMVA+ALMA, 3 mm, Angular resolution: ~40 µas

Walker et al. (2018)

Walker et al. (2018)

GMVA+ALMA+GLT

- The longest baselines determine the angular resolution.
- The (u,v) coverage determines the image fidelity.

Article

A ring-like accretion structure in M87 connecting its black hole and jet

https://doi.org/10.1038/s41586-023-05843-w Received: 21 October 2022 Accepted: 14 February 2023 Open access Check for updates

Ru-Sen Lu^{1,2,3}, Keiichi Asada⁴, Thomas P. Krichbaum³, Jongho Park^{4,5}, Fumie Tazaki^{6,7}, Hung-Yi Pu^{4,8,9}, Masanori Nakamura^{4,10}, Andrei Lobanov³, Kazuhiro Hada^{7,11}, Kazunori Akiyama^{12,13,14}, Jae-Young Kim^{3,5,15}, Ivan Marti-Vidal^{16,17}, Jose L. Gomez¹⁸, Tomohisa Kawashima¹⁹, Feng Yuan^{1,20,21}, Eduardo Ros³, Walter Alef³, Silke Britzen³. Michael Bremer²², Avery E. Broderick^{23,24,25}, Akihiro Doi^{26,27}, Gabriele Giovannini^{28,29}, Marcello Giroletti²⁹, Paul T. P. Ho⁴, Mareki Honma^{7,10,30}, David H. Hughes³¹, Makoto Inoue⁴, Wu Jiang¹, Motoki Kino^{14,32}, Shoko Koyama^{4,33}, Michael Lindqvist³⁴, Jun Liu³, Alan P. Marscher³⁵, Satoki Matsushita⁴, Hiroshi Nagai^{11,14}, Helge Rottmann³, Tuomas Savolainen^{3,36,37}, Karl-Friedrich Schuster²², Zhi-Qiang Shen^{1,2}, Pablo de Vicente³⁸, R. Craig Walker³⁹, Hai Yang^{1,21}, J. Anton Zensus³, Juan Carlos Algaba⁴⁰, Alexander Allardi⁴¹, Uwe Bach³, Ryan Berthold⁴², Dan Bintley⁴², Do-Young Byun^{5,43}, Carolina Casadio^{44,45}, Shu-Hao Chang⁴, Chih-Cheng Chang⁴⁶, Song-Chu Chang⁴⁶, Chung-Chen Chen⁴, Ming-Tang Chen⁴⁷, Ryan Chilson⁴⁷, Tim C. Chuter⁴², John Conway³⁴, Geoffrey B. Crew¹³, Jessica T. Dempsey^{42,48}, Sven Dornbusch³, Aaron Faber⁴⁹, Per Friberg⁴², Javier González García³⁸. Miguel Gómez Garrido³⁸. Chih-Chiang Han⁴. Kuo-Chang Han⁵⁰. Yutaka Hasegawa⁵¹, Ruben Herrero-Illana⁵², Yau-De Huang⁴, Chih-Wei L. Huang⁴, Violette Impellizzeri^{53,54}, Homin Jiang⁴, Hao Jinchi⁵⁵, Taehyun Jung⁵, Juha Kallunki³⁷, Petri Kirves³⁷, Kimihiro Kimura⁵⁶, Jun Yi Koay⁴, Patrick M. Koch⁴, Carsten Kramer²², Alex Kraus³, Derek Kubo⁴⁷, Cheng-Yu Kuo⁵⁷, Chao-Te Li⁴, Lupin Chun-Che Lin⁵⁸, Ching-Tang Liu⁴, Kuan-Yu Liu⁴, Wen-Ping Lo^{4,59}, Li-Ming Lu⁴⁶, Nicholas MacDonald³, Pierre Martin-Cocher⁴, Hugo Messias^{51,60}, Zheng Meyer-Zhao^{4,48}, Anthony Minter⁶¹, Dhanya G. Nair⁶², Hiroaki Nishioka⁴, Timothy J. Norton⁶³, George Nystrom⁴⁷, Hideo Ogawa⁵¹, Peter Oshiro⁴⁷, Nimesh A. Patel⁶³, Ue-Li Pen⁴, Yurii Pidopryhora^{3,64}, Nicolas Pradel⁴, Philippe A. Raffin⁴⁷, Ramprasad Rao⁶³, Ignacio Ruiz⁶⁵, Salvador Sanchez⁶⁵, Paul Shaw⁴, William Snow⁴⁷, T. K. Sridharan^{54,63}, Ranjani Srinivasan^{4,63}, Belén Tercero³⁸, Pablo Torne⁶⁵, Thalia Traianou^{3,18}, Jan Wagner³, Craig Walther⁴², Ta-Shun Wei⁴, Jun Yang³⁴ & Chen-Yu Yu⁴

The whole collaboration consists of nearly ~100 people around the world.

Published in Nature on April 27, 2023.

Article

A ring-like accretion structure in M87 connecting its black hole and jet

https://doi.org/10.1038/s41586-023-05843
Received: 21 October 2022
Accepted: 14 February 2023
Open access
Check for updates

Ru-Sen Lu^{1,2,3 $\boxtimes}$, Keiichi Asada $^{4\boxtimes}$, Thomas P. Krichbaum $^{3\boxtimes}$, Jongho Park 4,5 , Fumie Tazaki 6,1} Hung-Yi Pu^{4,8,9}, Masanori Nakamura^{4,10}, Andrei Lobanov³, Kazuhiro Hada^{7,11}, Kazunori Akiyama^{12,13,14}, Jae-Young Kim^{3,5,15}, Ivan Marti-Vidal^{16,17}, Jose L. Gomez¹⁸, Tomohisa Kawashima¹⁹, Feng Yuan^{1,20,21}, Eduardo Ros³, Walter Alef³, Silke Britzen³, Michael Bremer²², Avery E. Broderick^{23,24,25}, Akihiro Doi^{26,27}, Gabriele Giovannini^{28,29}, Marcello Giroletti²⁹, Paul T. P. Ho⁴, Mareki Honma^{7,10,30}, David H. Hughes³¹, Makoto Inoue⁴, Wu Jiang¹, Motoki Kino^{14,32}, Shoko Koyama^{4,33}, Michael Lindqvist³⁴, Jun Liu³, Alan P. Marscher³⁵, Satoki Matsushita⁴, Hiroshi Nagai^{11,14}, Helge Rottmann³, Tuomas Savolainen^{3.36,37}, Karl-Friedrich Schuster²², Zhi-Qiang Shen^{1,2}, Pablo de Vicente³⁸, R. Craig Walker³⁹, Hai Yang^{1,21}, J. Anton Zensus³, Juan Carlos Algaba⁴⁰, Alexander Allardi⁴¹, Uwe Bach³, Ryan Berthold⁴², Dan Bintley⁴², Do-Young Byun^{5,43}, Carolina Casadio^{44,45}, Shu-Hao Chang⁴, Chih-Cheng Chang⁴⁶, Song-Chu Chang⁴⁶, Chung-Chen Chen⁴, Ming-Tang Chen⁴⁷, Ryan Chilson⁴⁷, Tim C. Chuter⁴², John Conway³⁴, Geoffrey B. Crew¹³, Jessica T. Dempsey^{42,48}, Sven Dornbusch³, Aaron Faber⁴⁹, Per Friberg⁴², Javier González García³⁸, Miguel Gómez Garrido³⁸, Chih-Chiang Han⁴, Kuo-Chang Han⁵⁰, Yutaka Hasegawa⁵¹, Ruben Herrero-Illana⁵², Yau-De Huang⁴, Chih-Wei L. Huang⁴, Violette Impellizzeri^{53,54}, Homin Jiang⁴, Hao Jinchi⁵⁵, Taehyun Jung⁵, Juha Kallunki³⁷, Petri Kirves³⁷, Kimihiro Kimura⁵⁶, Jun Yi Koay⁴, Patrick M. Koch⁴, Carsten Kramer²², Alex Kraus³, Derek Kubo⁴⁷, Cheng-Yu Kuo⁵⁷, Chao-Te Li⁴, Lupin Chun-Che Lin⁵⁸, Ching-Tang Liu⁴, Kuan-Yu Liu⁴, Wen-Ping Lo^{4,59}, Li-Ming Lu⁴⁶, Nicholas MacDonald³, Pierre Martin-Cocher⁴, Hugo Messias^{51,60}, Zheng Meyer-Zhao^{4,48}, Anthony Minter⁶¹, Dhanya G. Nair⁶², Hiroaki Nishioka⁴, Timothy J. Norton⁶³, George Nystrom⁴⁷, Hideo Ogawa⁵¹, Peter Oshiro⁴⁷, Nimesh A. Patel⁶³, Ue-Li Pen⁴, Yurii Pidopryhora^{3,64}, Nicolas Pradel⁴, Philippe A. Raffin⁴⁷, Ramprasad Rao⁶³, Ignacio Ruiz⁶⁵, Salvador Sanchez⁶⁵, Paul Shaw⁴, William Snow⁴⁷, T. K. Sridharan^{54,63}, Ranjani Srinivasan^{4,63}, Belén Tercero³⁸, Pablo Torne⁶⁵, Thalia Traianou^{3,18}, Jan Wagner³, Craig Walther⁴², Ta-Shun Wei⁴, Jun Yang³⁴ & Chen-Yu Yu⁴

The whole collaboration consists of nearly ~100 people around the world.

The core analysis team consists of ~10 people in China, Germany, Japan, Korea, and Taiwan.

Published in Nature on April 27, 2023.

Article

A ring-like accretion structure in M87 connecting its black hole and jet

https://doi.org/10.1038/s41586-023-05843-w Received: 21 October 2022 Accepted: 14 February 2023 Open access Check for updates	
Received: 21 October 2022 Accepted: 14 February 2023 Open access Check for updates	https://doi.org/10.1038/s41586-023-05843-w
Accepted: 14 February 2023 Open access Check for updates	Received: 21 October 2022
Open access Open access Check for updates	Accepted: 14 February 2023
Open access Check for updates	
Check for updates	Open access
	Check for updates

Ru-Sen Lu^{1,2,3}, Keiichi Asada⁴, Thomas P. Krichbaum³ Jongho Park^{4,5} Fumie Tazaki^{6,} Hung-Yi Pu^{4,8,9}, Masano<u>ri Nakamura^{4,10}, Andrei Lobanov³, Kazuhiro Hada^{,,1}122, </u> Kazunori Akiyama^{12,13,14}, Jae-Young Kim^{3,5,15}, Ivan Marti-Vidal^{16,17}, Jose L. Gomez¹⁸, Tomohisa Kawashima¹⁹, Feng Yuan^{1,20,21}, Eduardo Ros³, Walter Alef³, Silke Britzen³, Michael Bremer²², Avery E. Broderick^{23,24,25}, Akihiro Doi^{26,27}, Gabriele Giovannini^{28,29}, Marcello Giroletti²⁹, Paul T. P. Ho⁴, Mareki Honma^{7,10,30}, David H. Hughes³¹, Makoto Inoue⁴, Wu Jiang¹, Motoki Kino^{14,32}, Shoko Koyama^{4,33}, Michael Lindqvist³⁴, Jun Liu³, Alan P. Marscher³⁵, Satoki Matsushita⁴, Hiroshi Nagai^{11,14}, Helge Rottmann³, Tuomas Savolainen^{3,36,37}, Karl-Friedrich Schuster²², Zhi-Qiang Shen^{1,2}, Pablo de Vicente³⁸, R. Craig Walker³⁹, Hai Yang^{1,21}, J. Anton Zensus³, Juan Carlos Algaba⁴⁰, Alexander Allardi⁴¹, Uwe Bach³, Ryan Berthold⁴², Dan Bintley⁴², Do-Young Byun^{5,43}, Carolina Casadio^{44,45}, Shu-Hao Chang⁴, Chih-Cheng Chang⁴⁶, Song-Chu Chang⁴⁶, Chung-Chen Chen⁴, Ming-Tang Chen⁴⁷, Ryan Chilson⁴⁷, Tim C. Chuter⁴², John Conway³⁴, Geoffrey B. Crew¹³, Jessica T. Dempsey^{42,48}, Sven Dornbusch³, Aaron Faber⁴⁹, Per Friberg⁴², Javier González García³⁸, Miguel Gómez Garrido³⁸, Chih-Chiang Han⁴, Kuo-Chang Han⁵⁰, Yutaka Hasegawa⁵¹, Ruben Herrero-Illana⁵², Yau-De Huang⁴, Chih-Wei L. Huang⁴, Violette Impellizzeri^{53,54}, Homin Jiang⁴, Hao Jinchi⁵⁵, Taehyun Jung⁵, Juha Kallunki³⁷, Petri Kirves³⁷, Kimihiro Kimura⁵⁶, Jun Yi Koay⁴, Patrick M. Koch⁴, Carsten Kramer²², Alex Kraus³, Derek Kubo⁴⁷, Cheng-Yu Kuo⁵⁷, Chao-Te Li⁴, Lupin Chun-Che Lin⁵⁸, Ching-Tang Liu⁴, Kuan-Yu Liu⁴, Wen-Ping Lo^{4,59}, Li-Ming Lu⁴⁶, Nicholas MacDonald³, Pierre Martin-Cocher⁴, Hugo Messias^{51,60}, Zheng Meyer-Zhao^{4,48}, Anthony Minter⁶¹, Dhanya G. Nair⁶², Hiroaki Nishioka⁴, Timothy J. Norton⁶³, George Nystrom⁴⁷, Hideo Ogawa⁵¹, Peter Oshiro⁴⁷, Nimesh A. Patel⁶³, Ue-Li Pen⁴, Yurii Pidopryhora^{3,64}, Nicolas Pradel⁴, Philippe A. Raffin⁴⁷, Ramprasad Rao⁶³, Ignacio Ruiz⁶⁵, Salvador Sanchez⁶⁵, Paul Shaw⁴, William Snow⁴⁷, T. K. Sridharan^{54,63}, Ranjani Srinivasan^{4,63}, Belén Tercero³⁸, Pablo Torne⁶⁵, Thalia Traianou^{3,18}, Jan Wagner³, Craig Walther⁴², Ta-Shun Wei⁴, Jun Yang³⁴ & Chen-Yu Yu⁴

The whole collaboration consists of nearly ~100 people around the world.

The core analysis team consists of ~10 people in China, Germany, Japan, Korea, and Taiwan.

경희대학교 박종호

UNIST 김재영

Published in Nature on April 27, 2023.

0.1 mas ~13 Rs

Log scale

0.1 mas ~13 Rs

Log scale

"Photon ring" and "Black Hole Shadow"

Credit: Shiokawa

The ring-like structure is believed to originate from synchrotron emission in the plasma around the black hole.

- Accretion Flows (thermal synchrotron)
- Jets (Nonthermal synchrotron)
- Photon capture at the Event Horizon (geometric effect)

Credit: Pu & Nakamura

- The photon ring emission + outer disk emission become more dominant in the disk-dominated model.
- The photon ring emission + forward jet base emission become more dominant in the jet-dominated model.

- At 230 GHz, the photon ring emission is dominant in both models.
- At 86 GHz, the innermost accretion disk emission and the photon ring emission become optically thick in the disk model. The forward jet base emission is dominant in the jet model.

Credit: Pu & Nakamura

- The photon ring emission + outer disk emission become more dominant in the disk-dominated model.
- The photon ring emission + forward jet base emission become more dominant in the jet-dominated model.

Credit: Pu & Nakamura

- The photon ring emission + outer disk emission become more dominant in the disk-dominated model.
- The photon ring emission + forward jet base emission become more dominant in the jet-dominated model.

Credit: Pu & Nakamura

- The photon ring emission + outer disk emission become more dominant in the disk-dominated model.
- The photon ring emission + forward jet base emission become more dominant in the jet-dominated model.

What constitutes the observed ring-like structure?

- The ring-like structure revealed by GMVA+ALMA at 86 GHz indicates the accretion structure that was not very evident in the EHT 230 GHz images.
- We don't see clear brightness asymmetry as the emission is dominated by the outer accretion disk.

GMVA 3.5 mm

EHT 1.3 mm

Significant contribution from the outer part of the Accretion Disk

Larger Diameter & Symmetric Brightness

Future Prospects: the M87 black hole images in multiple colors

GMVA+ALMA 43/86 GHz (PI: J. Park)

╋

EHT 230/345 GHz in 2024/2025

Future Prospects: the M87 black hole movie obtained by the next-generation EHT

The ngEHT project (https://www.ngeht.org)

Johnson et al. 2023

Future Prospects: the M87 black hole movie obtained by the next-generation EHT

Blackburn et al. (2019)

Future Prospects: the M87 black hole movie obtained by the next-generation EHT

The M87 movie created based on GRMHD simulations Credit: the ngEHT collaboration

Future Prospects: the M87 black hole images in multiple colors

Issaoun et al. (2023)

Credit: CK Chan

Future Prospects: the M87 black hole images in multiple colors

- A bottleneck of high frequency VLBI observations is a short atmospheric coherence time.
- We can dramatically increase the coherence time using simultaneous multi-frequency observations.
- The KVN has demonstrated the power of this system at 22/43/86/129 GHz, and KASI is developing a new system for 86/230/345 GHz (submm-Compact Triple Receiver; submm-CTR; PI: 이정원)

The Black Hole Explorer (BHEX)

- We revealed a ring-like structure at the center of M87 at 3.5 mm with the GMVA+ALMA.
- The observed size of the ring at 3.5 mm is \sim 50% larger than that of the EHT ring at 1.3 mm.
- The discrepancy can be reconciled if (i) the photon ring emission is dominant at 1.3 mm and (ii) the photon ring emission is optically thick and the outer accretion disk emission is more dominant at 3.5 mm.
- We plan to extensively investigate the M87 black hole and jet in the frequency and time domain in the future, and KASI and Korea will play a critical role.

Backup Slides

73rd Workshop on Gravitational Waves and Numerical Relativity

Sagittarius A*

MAD, a = 0.94, i = 150 degrees

73rd Workshop on Gravitational Waves and Numerical Relativity

Annual Evolution of the M87* Ring Structure

73rd Workshop on Gravitational Waves and Numerical Relativity

What constitutes the observed ring-like structure?

Credit: the EHT collaboration

What constitutes the observed ring-like structure?

Credit: Shiokawa

The ring-like structure is believed to originate from synchrotron emission in the plasma around the black hole.

- Accretion Flows (thermal synchrotron)
- Jets (Nonthermal synchrotron)
- Photon capture at the Event Horizon (geometric effect)

Future Prospects: the M87 black hole images in multiple colors

v=1.0e+10Hz λ=3.0e+01mm

Issaoun et al. (2023)

Credit: CK Chan

Future Prospects: Testing the Jet Launching Mechanism for M87 through Monitoring Observations.

- Reconstructing a ring-like structure can be greatly affected by the (u,v)-coverage.
- The JCMT, providing high SNR very long baselines along the EW direction, plays a crucial role in accurately reconstructing the structure.

What constitutes the observed ring-like structure?

GVA Observations

$$I'(x,y) = A(x,y) I(x,y) = \int_{-\infty}^{\infty} V(u,v,0) e^{-i2\pi(ux+vy)} du dv$$

the van Cittert-Zernike relation

$$I(x,y) \stackrel{\mathrm{f.t.}}{\dashrightarrow} V(u,v)$$

$$V(u,v) \stackrel{\text{F.T.}}{\longleftrightarrow} I(l,m) S(u,v) \stackrel{\text{F.T.}}{\longleftarrow} s(l,m)$$

measurements

$$V(u,v)S(u,v) \qquad \begin{array}{l} S(u,v)=1 & \text{if there is data} \\ & \downarrow \\ F.T. & \text{dirty beam} \end{array} \\ I^D(l,m)=I(l,m)*s(l,m) \end{array}$$

dirty image

Research Talk at University of Mississippi - 2024 November 21

Dirty Beam and Dirty Image

Research Talk at University of Mississippi - 2024 November 21

Slide taken from NRAO Synthesis Imaging Workshop

$$V(u,v)S(u,v) \xrightarrow{\mathcal{F}} T^D(l,m)$$

$$T(l,m)\ast s(l,m)=T^D(l,m)$$

- 1. Deconvolution using s(l, m)
- CLEAN (Hogbom 1974)
- Assume that the source consists of a sum of point sources
- Conventional Method
- Successful but Limitation

How to derive T(1, m)?

2. Forward "Modeling"

- Regularized Maximum Likelihood (RML) method
- Construct model images and directly fit them to the visibilities
- "Super-resolution" is possible
- Have not been extensively tested.

Very Long Baseline Interferometry & Event Horizon Telescope

Credit: https://www.sciencedirect.com/topics/earth-and-planetary-sciences/radio-astronomy

Interference of radio signals received at two separated telescopes allows us to capture the source structure at a high resolution. The Fourier transform of the correlated signals for different baseline vectors (on the u-v plane) can provide a source image.

$$T(l,m) = \int \int V(u,v) e^{i2\pi(ul+vm)} du dv$$

Very Long Baseline Interferometry & Event Horizon Telescope

Very long baseline interferometry (VLBI) is a radio interferometer of telescopes separated by very long distances. One has to save the voltage data to hard drives at each station, bring the disks to the same place, and compute correlations (interference) of the signals.

How to remove instrumental signals from the data?

The derived D-terms from different sources, days, and softwares are consistent with each other.

Verification using synthetic data

We verified softwares and optimized parameters using various simulated data.

Linear Polarization Quantities

We obtained four quantities and define "conservative" ranges to be compared with the model.

$$|m|_{\text{net}} = \frac{\sqrt{\left(\sum_{i} Q_{i}\right)^{2} + \left(\sum_{i} U_{i}\right)^{2}}}{\sum_{i} I_{i}} \left\langle \right.$$

"Net" frac. pol.

$$\langle |m|
angle = rac{\sum_i \sqrt{Q_i^2 + U_i^2}}{\sum_i I_i}$$

Intensity-weighted frac. pol.

$$eta_2 = rac{1}{I_{
m ring}} \int_{
ho_{
m min}}^{
ho_{
m max}} \int_0^{2\pi} P(
ho,\,arphi) \, e^{-2iarphi} \,
ho darphi d
ho$$

m=2 mode of azimuthal decomposition of the polarized ring structure