Nuclear Astrophysics (Stars and Compact Objects and their connection to multi-messenger astronomy)

Kyujin Kwak (곽규진)

Ulsan National Institute of Science and Technology (UNIST)

November 27, 2022

73rd Workshop on Gravitational Waves and Numerical Relativity @APCTP

Personal Journey toward Astrophysics

- Was a master student to study nuclear theory, but ended up with leaving the field of nuclear physics for astrophysics
- Did not have any intention to use computers for my research career but ended up with spending the entire PhD years on the code development
- Finally came back to nuclear physics community
- Astrophysics with nuclear physics, computation, and more else
- Do not need to put any constraint on who I am or what I do: my limit is my imagination

Astrophysics that I have understood so far

Lattimer & Prakash (2004, Science, 304, 536)

What I have learned and thought to know so far

- Basic courses in physics
- Quantum field theory: Lagrangian, Feynmann diagram, renormalization, etc.
- Computer codes: Fortran, python, etc.
- Algorithms: PDEs for hydrodynamics, solvers for rate equations, etc.
- And more ...
- (Ideas and scientific writing)

Nuclear Astrophysics = Astronomy (Observation) + Nuclear Physics (Theory) + Nuclear Physics (Experiment)

Outline

- History of Nuclear Astrophysics
- Observations and Theory
 - Stellar Evolution
 - X-ray Burst
- Experiments

Nobel Prizes I

Hans Bethe 1967 Stellar Nucleosynthesis (1939) William Alfred Fowler 1983 Discovery of ¹²C resonance (1952) Subrahmanyan Chandrasekhar 1983 Structure and evolution of stars (1939)

Nobel Prizes II

Arthur B. McDonald 2015 Solar neutrino oscillation (2001)

Takaaki Kajita 2015 Atmospheric neutrino oscillation (1998)

More Nobel Prizes I

2002	Raymond Davis, Jr.	United States	"for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos" ^[102] 1980 's & $1970-1994$
	Masatoshi Koshiba	Japan	
	Riccardo Giacconi	Italy United States	"for pioneering contributions to astrophysics, which have led to the discovery of cosmic X-ray sources" ^[102] X-ray Astronomy starting from late 1950's

More Nobel Prizes II

1993	Russell Alan Hulse Joseph Hooton Taylor, Jr.	United States United States	"for the discovery of a new type of pulsar, a discovery that has opened up new possibilities for the study of gravitation" ^[93] 1974
1974	Martin Ryle	United Kingdom	"for their pioneering research in radio astrophysics: Ryle for his observations and inventions, in particular of the aperture synthesis technique, and Hewish for his decisive role in the discovery of pulsars" ^[74] 1967
	 Antony Hewish	United Kingdom	
1963	Eugene Paul Wigner	Hungary United States	"for his contributions to the theory of the atomic nucleus and the elementary particles, particularly through the discovery and application of fundamental symmetry principles" ^[63]
	Maria Goeppert- Mayer	United States	"for their discoveries concerning nuclear shell structure" ^[63] 1950
	J. Hans D. Jensen	West Germany	

Stellar Evolution

• Stars are building blocks of the universe.

Hertzsprung–Russell Diagram

별의 진화: 관측

별의 진화: 이론

Hertzprung-Russell diagram

별의 진화: 시뮬레이션

Theory of Stellar Evolution

Basic equations to calculate stellar structure(Using Lagrangian coordinates) 1. $\frac{dP(M)}{dM} = -\frac{GM}{4\pi r^4(M)}$ Hydrostatic equilibrium equation 2. $\frac{dL(M)}{dM} = \varepsilon - T \frac{dS}{dt}$ Thermal energy conservation equation 3. $\frac{dT}{dM} = -\frac{3kL}{4acT^3 16\pi^2 r^4}$ Energy transfer equation for radiative equilibrium condition 4. $\frac{dT}{dM} = \frac{\Gamma_2 - 1}{\Gamma_2} \frac{T}{P} \frac{dP}{dM}$ Energy transfer equation for convective condition

To calculate the composition of a star, we need to solve general composition change equation $5 \cdot \left[\frac{\partial N(A,Z)}{\partial t}\right]_{nuclear\ reaction} = r_{generation}(A,Z) - r_{annihilation}(A,Z)$ This equation should include all related isotopes. So it is generally represented by a matrix form.

Nuclear Reactions Inside a Star

Nuclear Chart

Star's Life

Inside of Old Massive Star: Onion-like Structure

Evolution of the Sun from main sequence to end of fusion

Simulation Tool: MESA Paxton et al. 2011, ApJS (MESA I)

Modules for Experiments in Stellar Astrophysics

- 1D stellar evolution code
- **Openness**: anyone can download sources from the website.
- **Modularity**: independent modules for physics and for numerical algorithms; the parts can be used stand-alone.

- Wide Applicability: capable of calculating the evolution of stars in a wide range of environments.

- **Comprehensive Microphysics**: up-to-date, wide-ranging, flexible, and independently useable microphysics modules.

- **Modern Techniques**: advanced AMR, fully coupled solution for composition and abundances, mass loss and gain, etc.

Evolution of the Sun Traced by MESA

Nuclear Reactions inside the Sun

Energy Generation

Thermonuclear Reactions (for a dummy like me)

C. Nuclear reaction rate

Definition: nuclear reaction rate $r_{xy} := N_x \cdot N_y \cdot v \cdot \sigma(v)$

with: N_x, N_y number density of particles x, y (i.e., particles per cm³) v relative velocity between x and y $\sigma(v)$ cross section [r] = reactions per cm³ per s = cm⁻³ s⁻¹

• in stellar gas: Maxwell-Boltzmann distribution of velocities $\Phi(v)$

$$\Rightarrow r_{xy} = N_x N_y \langle \sigma v \rangle$$
with $\langle \sigma v \rangle := \int_0^\infty \Phi(v) v \sigma(v) dv$

$$\Phi(v) = 4\pi v^2 \left(\frac{m}{2\pi kT}\right)^{3/2} \exp\left(-\frac{mv^2}{2kT}\right) = f(T)$$
with $m = \frac{m_x m_y}{m_x + m_y} = \text{"reduced mass"}$

$$E = \frac{1}{2}mv^2$$

$$\Rightarrow \left\langle \sigma v \right\rangle = \left(\frac{8}{\pi m} \right)^{\frac{1}{2}} \frac{1}{(kT)^{\frac{3}{2}}} \int_{0}^{\infty} \sigma(E) E \exp\left(-\frac{E}{kT}\right) dE$$

E. Astrophysical S-factor

 $\begin{array}{l} \mbox{Cross section (B)} \Rightarrow \sigma(E) \sim \pi \lambda^2 \sim 1/E \\ \mbox{Tunnel effect (D)} \Rightarrow \sigma(E) \sim exp(-2\pi\eta), \ \eta \sim 1/\sqrt[]{E} \end{array}$

$$\Rightarrow \text{ define } S(E) \text{ such that}$$

$$\sigma(E) = \frac{1}{E} \exp(-2\pi\eta) \cdot S(E)$$

$$\Rightarrow \langle \sigma v \rangle = \left(\frac{8}{\pi m}\right)^{1/2} \frac{1}{(kT)^{3/2}} \int_0^{\infty} S(E) \exp\left[-\frac{E}{kT} - \sqrt{\frac{b}{E}}\right] dE$$

$$\text{ with } b := (2m)^{1/2} \pi e^2 Z_x Z_y / \hbar$$

$$= 0.989 Z_x Z_y A^{1/2} \quad [(MeV)^{1/2}]$$

$$(b^2 = \text{``Gamow energy''})$$

- often: S(E) varies slowly with E
 - → Gamow-peak at energy $E_0 > kT$ → for narrow T-range: $S(E) \simeq S(E_0) = const$.

$$\Rightarrow \langle \sigma v \rangle = \left(\frac{8}{\pi m}\right)^{1/2} \frac{1}{(kT)^{3/2}} \operatorname{S}(\mathsf{E}_0) \int_0^\infty \exp\left(-\frac{\mathsf{E}}{kT} - \frac{\sqrt{\mathsf{b}}}{\mathsf{E}}\right) \mathsf{d}\mathsf{E}$$

direct capture reaction $|: A(X, \gamma)B|$

nucleus A captures projectile X directly to the low-energy state of nucleus B (see Fig. 2.7)

- $\rightarrow \sigma$ varies smoothly with energy
- \rightarrow all projectile energies above Q-value are possible
- \rightarrow non-resonant reaction

resonant capture reaction $|: A(X, \gamma)B$

A + X form excited compound nucleus B*, which later decays to low-energy state B* \to B + γ (see Fig. 2.8)

 \rightarrow 2 step process

 \rightarrow possible only if projectile energy matches the energy level of the excited state B*!

 $\rightarrow \sigma(E)$ may have large local maxima

 \rightarrow resonant reaction

→ energy levels of nuclei often not accurately known

TARGET A

EXCITED STATE Er OF COMPOUND NUCLEUS B (RESONANCE)

FINAL STATE OF COMPOUND NUCLEUS B

Complications

- Metallicity
- Convection
- Mass Loss
- Rotation
- Magnetic Field
- And More

Convection: Mixing Length Theory

$$V_{\rm conv} = \frac{1}{2} \left(\frac{GM}{\rho r^2} \Delta \nabla \rho \right)^{1/2} l,$$

$$D_{\rm conv} = \frac{1}{3} V_{\rm conv} l.$$

$$\left(\frac{\partial Y_i}{\partial t}\right)_{\rm conv} = \frac{\partial}{\partial M(r)} \left[(4\pi r^2 \rho)^2 D \, \frac{\partial Y_i}{\partial M(r)} \right],$$
Mass Loss

$$\log\left(\frac{\dot{M}}{M_{\odot} \text{ yr}^{-1}}\right) = \begin{cases} -12.43 + 1.5 \log(L/L_{\odot}) - 2.85X_{s} & \text{if } \log(L/L_{\odot}) \ge 4.45\\ -36.28 + 6.8 \log(L/L_{\odot}) & \text{if } \log(L/L_{\odot}) < 4.45, \end{cases}$$

MESA: Dutch Wind Scheme A Combination of Glebbeek et al. 2009 Vink et al. 2001 Nugis & Lamers 2000 Nieuwenhuijzen & de Jager 1990

MESA: Updates

- Paxton et al. 2013, ApJS (MESA II)
- Rotation
 - Affects mixing, angular momentum transport, and mass loss
 - Effect of internal magnetic field through dynamo: mixing and angular momentum transport
- New Treatment of Convection
 - Reduces computing times in radiation-dominated convective regions
 - Allows for the calculation down to core-collapse

Initial Mass Function

Pre-supernova near the end of a massive star's life

Onion-like Structure of Pre-Supernova

Paxton et al. 2011, ApJS (MESA I)

Where does the bounce begin?

Woosley & Heger, 2007 (from 20 M_sun)

$25 \ M_{\odot}$ with Solar Metallicity

43

H Burning (p-p chain)

 $p + p \rightarrow d + e^+ + v_e$ $d + p \rightarrow {}^{3}\text{He} + \gamma$

	p-p-I: 85%	p-p-II: 15%	p-p-III: 0.01%
3	He + ³ He $\rightarrow \alpha + p + p$	$^{3}\text{He} + \alpha \rightarrow ^{7}\text{Be} + \gamma$	$^{3}\text{He} + \alpha \rightarrow ^{7}\text{Be} + \gamma$
		$^{7}\text{Be} + \text{e}^{-} + ^{7}\text{Li} + \text{v}_{e}$	$^{7}\text{Be} + p \rightarrow ^{8}\text{B} + \gamma$
		$^{7}\text{Li} + p \rightarrow \alpha + \alpha$	${}^{8}B \rightarrow {}^{8}Be + e^{+} + v_{e}$
			⁸ Be $\rightarrow \alpha + \alpha$

Nuclear Reactions during MS

- Hydrogen Burning through CNO cycle ${}^{12}C(p,\gamma){}^{13}N(e^+\nu){}^{13}\breve{C}(p,\gamma){}^{14}N(p,\gamma){}^{15}O(e^+\nu){}^{15}N(p,\alpha){}^{12}C$
- Helium Burning

$$3 \alpha \rightarrow {}^{12}C$$
$${}^{12}C(\alpha,\gamma){}^{16}O$$
$${}^{14}N(\alpha,\gamma){}^{18}F(\beta^+\nu){}^{18}O$$

Nuclear Synthesis during H Burning

- ¹⁴N(p,γ)¹⁵N
- ¹²C(p,γ)¹³C
- ²⁵Mg(p,γ)²⁶Al
- ¹⁶O(p,γ)¹⁷O
- ¹⁷O(p,γ)¹⁸F
- ¹⁷O(p,α)¹⁴N

Nuclear Synthesis during He Burning

- ${}^{14}N(\alpha,\gamma){}^{18}F(e^+,\nu){}^{18}O$
- ¹⁸O(α,γ)²²Ne
- $^{15}N(\alpha,\gamma)^{19}F$
- ¹⁸O(p,α)¹⁵N
- ¹⁴N(n,p)¹⁴C

S-process

- Mainly during He burning
 - ${}^{22}Ne(\alpha,n){}^{25}Mg$ provides neutrons.
 - ${}^{22}Ne(\alpha,\gamma){}^{26}Mg$ is also possible.

Advanced Nuclear Burning Stages

C Burning

 ${}^{12}\text{C} + {}^{12}\text{C} \rightarrow {}^{24}\text{Mg}^* \rightarrow {}^{23}\text{Mg} + n - 2.62 \text{ MeV}$ $\rightarrow {}^{20}\text{Ne} + \alpha + 4.62 \text{ MeV}$ $\rightarrow {}^{23}\text{Na} + p + 2.24 \text{ MeV}.$

 20 Ne(p, γ) 21 Na(e⁺ v) 21 Ne 21 Ne(p, γ) 22 Na(e⁺ v) 22 Ne

Ne Burning

 $2^{20}Ne \rightarrow {}^{16}O + {}^{24}Mg + 4.59 \text{ MeV}.$

 20 Ne(γ, α) 16 O 20 Ne(α, γ) 24 Mg

 $^{24}Mg(\alpha,\gamma)^{28}Si$ $^{25}Mg(\alpha,n)^{28}Si$ $^{26}Mg(\alpha,n)^{29}Si$ $^{26}Mg(p,n)^{26}Al$

.....

O Burning

¹⁶O+¹⁶O \rightarrow ³²S* \rightarrow ³¹S+*n*+1.45 MeV \rightarrow ³¹P+*p*+7.68 MeV \rightarrow ³⁰P+*d*-2.41 MeV \rightarrow ²⁸Si+ α +9.59 MeV.

Weak Interactions ³⁰P(e⁺ v)³⁰S ³³S(e⁻ v)³³P Quasiequilibrium Clusters ${}^{28}Si(n,\gamma){}^{29}Si$ ${}^{29}Si(\gamma,n){}^{28}Si$

....

Si Burning

- Not direct ${}^{28}\text{Si} + {}^{28}\text{Si} \rightarrow {}^{56}\text{Ni}.$
- Under the quasiequilibrium clusters

²⁸Si(α, γ)³²S(γ, p)³¹P(γ, p)³⁰Si(γ, n)²⁹Si(γ, n)²⁸Si,

• With the decay of Silicon

²⁸Si(γ, α)²⁴Mg(γ, α)²⁰Ne($\dot{\gamma}, \alpha$)¹⁶O(γ, α)¹²C($\gamma, 2\alpha$) α

X-ray Bursts (XRBs)

X-ray Binary

- <u>X-ray binary Wikipedia</u>
- X-ray source first detected in the sky.
- Named as such because it is bright in X-ray and in a binary.
- Depending on the companion star (one of the binary)
 - Low mass X-ray binary (LMXB): a low-mass (dim) companion
 - High mass X-ray binary (HMXB): a high-mass (bright) companion
- Accretion disk around NS or BH is hot enough to emit thermal X-ray.
 <- This ideas was first proposed to explain the bright X-ray observed and then confirmed by following observations. <- observation of new phenomena followed by theoretical (or modeling) efforts.

56

Schematic view of X-ray binary

⁵⁷ **57/46**

LMXB vs. HMXB

Properties	LMXBs	HMXBs
Accreting object	Low B-field NS or BH	High B-field NS or BH
Companion	Low-mass main sequence	High-mass (O or B type) main sequence
	$(L_{opt}/L_x \ll 0.1)$	$(L_{opt}/L_x > 1)$
Stellar population	$Old(> 10^9 \text{ yr})$	$Young(<10^7 \text{ yr})$
Mechanism	Roche-lobe overflow	Stellar wind
Accretion timescale	$10^7 - 10^9 { m yr}$	$10^5 m yr$
Variability	X-ray bursts, Transient behavior	Regular X-ray pulsation
X-ray spectra	Soft ($\leq 10 \text{ keV}$)	Hard ($\geq 15 \text{ keV}$)

Table 1: Summary of LMXBs and HMXBs (Rosswog et al. 2011)

Theoretical view of LMXB

X-ray Bursts (XRBs)

Rossi X-Ray Timing Explorer (RXTE) 1995 - 2012

X-ray Burst (XRB)

- <u>X-ray burster Wikipedia</u>
- XRBs are found only in LMXBs but much brighter than LMXBs.
- Named as bursts because LMXBs are already bright in X-ray
- After XRBs were discovered, an immediate question followed. What caused XRBs? An answer is due to the runaway nuclear reaction often called rapid-proton capture process (rp-process).
- Photospheric radius expansion (PRE) occurs when the energy of XRB is large enough to be close to Eddington luminosity.
- * Eddington luminosity
 - Force due to radiation = Gravitational Force

61

What are the characteristic of Type I X-ray bursts?

- Occurs on the neutron star surface in LMXBs by nuclear ignition (unstable H or He)
- Energy range ~ 10keV (soft X-ray)
- Maximum luminosity ~ 10³⁸erg/s (Eddington limit)
- recurrence time ~ hours to days
- X-ray softening during decay
- regular or irregular bursts recurrence

number of Type I X-ray bursters ~ 84(2007) (of ~160 LMXBs), 2/3 located in the Galactic Bulge

X-ray Bursts (XRBs) in Low Mass X-ray Binary (LMXB)

BURSTS FROM 4U/MXB 1820-30

63

Light Curves of XRBs

• Burst duration: tens to hundreds of seconds

Galloway et al. 2008, ApJS

Modeling XRBs: in the context of X-ray Binary

Candidate Configuration (Ferraro+ 2015)

a (orbital separation) = 5.2 Rsun Porb = 0.9 days Roche Lobe radius = 1.78 Rsun Rsun = 7x10⁵ km KeV = 1.2x10⁷ K

Compact object (NS or BH) Mns = 1.4 Msun Rns = 10 km

Accretion Disk

Energy budget: fraction of (G Mns m_p)/Rns = 200 MeV

Companion

Mcomp = 0.9 Msun Rcomp = 1.7 Rsun Teff = 5440 K

65

Figure 6. Nuclear reaction sequence powering Type I X-ray bursts [101] with colored lines indicating rates driving particular parts of the X-ray burst light-curve [76].

66

Thermonuclear burning during X-ray burst – STEP 1: one zone model

Schatz et al. 2001 Phys. Rev. Lett. 68 (2001) 3471

From Schatz's Presentation

Waiting Points Nuclei

TABLE 1

PROTON SEPARATION ENERGIES OF ISOTONES NEAR THE LONG-LIVED WAITING POINT NUCLEI ⁶⁴GE, ⁶⁸SE, ⁷²KR, AND ⁷⁶SR

Nucleus	Sp ^a (MeV)	Uncertainty (keV)
⁶⁵ As	-0.43	290
⁶⁶ Se	2.43	180
⁶⁹ Br	-0.73	320
⁷⁰ Kr	2.14	190
⁷³ Rb	-0.55	320
⁷⁴ Sr	1.69	210
77 _Y	-0.23	Unknown
⁷⁸ Zr	1.28	Unknown

^a Taken from the compilation of Brown et al. 2002, except for the proton separation energies of ⁷⁷Y and ⁷⁸Zr, which were taken from the unpublished calculations of A. Brown 2002 (private communication).

Woosley et al., 2004, ApJS

Models for XRBs

Accretion onto the surface of neutron star

Magnetic fields

From Schatz's Presentation

Modeling XRBs: In the perspective of the structure of the neutron star

Figure 1. Schematic of the outer layers of a neutron star.

• From Meisel et al. 2018

Nature 2014

HR

doi:10.1038/nature12757

Strong neutrino cooling by cycles of electron capture and β^- decay in neutron star crusts

H. Schatz^{1,2,3}, S. Gupta⁴, P. Möller^{2,5}, M. Beard^{2,6}, E. F. Brown^{1,2,3}, A. T. Deibel^{2,3}, L. R. Gasques⁷, W. R. Hix^{8,9}, L. Keek^{1,2,3}, R. Lau^{1,2,3}, A. W. Steiner^{2,10} & M. Wiescher^{2,6}

Electron-capture/ β^- -decay pair		Density†	Chemical	Luminosity‡
Parent	Daughter*	$(10^{10}{ m gcm^{-3}})$	(MeV)	$(10^{36} \text{erg s}^{-1})$
²⁹ Mg	²⁹ Na	4.79	13.3	24
⁵⁵ Ti	⁵⁵ Sc, ⁵⁵ Ca	3.73	12.1	11
³¹ Al	³¹ Mg	3.39	11.8	8.8
³³ Al	³³ Mg	5.19	13.4	8.3
56Ti	56Sc	5.57	13.8	3.5
⁵⁷ Cr	⁵⁷ V	1.22	8.3	1.6
⁵⁷ V	⁵⁷ Ti, ⁵⁷ Sc	2.56	10.7	1.6
⁶³ Cr	⁶³ V	6.82	14.7	0.97
¹⁰⁵ Zr	¹⁰⁵ Y	3.12	11.2	0.92
⁵⁹ Mn	⁵⁹ Cr	0.945	7.6	0.88
¹⁰³ Sr	¹⁰³ Rb	5.30	13.3	0.65
⁹⁶ Kr	⁹⁶ Br	6.40	14.3	0.65
⁶⁵ Fe	⁶⁵ Mn	2.34	10.3	0.60
⁶⁵ Mn	⁶⁵ Cr	3.55	11.7	0.46

Table 1	Electron-capture/β ⁻	-decay pairs witl	n highest cooling rates
---------	---------------------------------	-------------------	-------------------------

Nuclear Reactions for Type I X-ray Bursts

- Hydrogen burning by CNO-cycle
- 3-alpha reaction
- alpha-p reaction
- p-gamma reaction
- weak interactions
- $e^- + {}^A Z \to {}^A (Z-1) + \nu_e,$

 $^{A}Z \rightarrow ^{A}(Z-1) + e^{+} + \nu_{e},$

$$3\alpha \rightarrow {}^{12}\text{C}(p,\gamma) {}^{13}\text{N}(p,\gamma) {}^{14}\text{O}(\alpha,p) {}^{17}\text{F}(p,\gamma)$$

$${}^{18}\text{Ne}(\alpha,p) {}^{21}\text{Na}(p,\gamma) {}^{22}\text{Mg}(\alpha,p) {}^{25}\text{Al}...$$
1D Multi-Zone Model

- Woosley et al., 2004, ApJS
 - Nuclear reaction networks of ~1300 isotopes

SUMMARY OF MODEL PROPERTIES						
Model	Z (Z_{\odot})	Acc. Rate $(10^{-10} M_{\odot} \text{ yr})$	Number of Bursts			
zm	0.05	3.5	4			
zM	0.05	17.5	15			
Zm	1	3.5	7			
ZM	1	17.5	12			

SUMMARY OF MODEL PROPERTIES

TABLE 2

Evolution of the zM-Model

Composition of the 1st Burst of the zM-Model

RAON (Korean Rare Isotope Accelerator)

Experiments of Nuclear Astrophysics @RAON

Summary

- Nuclear physics provides key information to understand various astrophysical phenomena such as stars and X-ray bursts.
- Nuclear reactions in astrophysical environments are still uncertain requiring better theoretical modeling and more accurate experimental measurements.
- RAON will be able to contribute to resolving some uncertain issues in nuclear astrophysics.

Searching for Undiscovered but Detectable Astrophysical Phenomena for the Multi-Messenger Astronomy

Contents

- Multi-Messenger Astronomy
 - Gravitational Wave (GW)
 - Neutrino Astronomy
 - (Cosmic-ray)
- Hunting for New Phenomena
 - Nearby massive evolved stars
 - Compact binaries: X-ray bursts (XRBs)
 - Order estimation (Back-of-Envelope Calculation)
 - Binary neutron stars in highly eccentric closed (elliptical) orbits
- Remaining issues (Devils are in details)

GRAVITATIONAL WAVE

According to Einstein's general theory of relativity

GRAVITATIONAL WAVE

- Therefore,
 - If an object (mass) undergoes accelerated motion
 - The space-time fluctuates

Changes of space-time spread out

GRAVITATIONAL WAVE

- Observation Difficulty
 - The weakest force of the 4 forces that make up fundamental interactions.
 - Gravity (6*10⁻³⁹) < Weak interaction (10⁻⁶) < Electromagnetism (1/137)
 < Strong interaction (1)
 - Too tiny of changes
 - Maximum amplitude of GW150914 (1st detected): 4*10⁻²¹ km (< Proton radius = 8.4*10⁻¹⁹ km)

1 ly = 9.461e+12 km

A change equivalent to the thickness of one hair

BINARY BLACK HOLE (BBH) MERGER

- The first case in which humans detected gravitational waves
- GW150914
 - First detected
 - $36 M_s + 29 M_s \rightarrow 62 M_s + GW (3M_s)$
 - Relativity velocity increased from 0.3c to 0.6c
 - About 1.3 * 10¹⁰ ly
 - 0.2 sec
 - GW's spectrogram is called "chirp"

GW DETECTOR: GROUND BASE

- Basic Principle: Michelson Interferometer
 - Laser light is sent into detector
 - A "splitter" splits the light and sends out two identical beams along the arms
 - Arm Length: LIGO 4km, VIRGO, KAGRA 3km
 - The light waves bounce and return
 - A hundreds of times
 - GW affects the interferometer's arms differently
 - Normally, the light returns unchanged to the splitter from both arms
 - The light waves cancel each other out.
 - If the arms are disturbed by a GW
 - The light waves will have travelled different distances.
 - Light then escapes through the splitter and hits the detector

2.5 GENERATION DETECTOR: KAGRA

- KAmioka GRAvitational wave detector (KAGRA)
- Gifu Prefecture, Japan
- Michelson Interferometer
 - 3 km arm
- Asia's first gravitational wave observatory
- Underground
- Cryogenic (About -250 °C)

9

Neutrino Astronomy and Astrophysics

- Neutrino astronomy
 - Emerging as an important part of multi-messenger astronomy together with gravitational wave (GW)
 - Many neutrino detectors/observatories are operating, under construction, and planned: ICECUBE, KM3NET, DUNE, Hyper-Kamiokande, JUNO
 - (Tentative) Korean Neutrino Observatory (KNO) is being pursued
- Neutrino astrophysics is not new at all!
 - Various astrophysical sites and production mechanisms for neutrino emission have been studied for a long time
 - But predicting detectability on operating/planned detectors is NEW!!

Neutrino Astronomy/Detector

- Detected
 - Solar and atmospheric neutrinos: lead to neutrino oscillation
 - Supernova explosion: 1987A
 - Distant galaxy: blazar TXS 0506+056

Korean Neutrino Observatory

Korean*Neutrino*Observatory*(KNO)*and*HyperLKamiokande (HK)

KNO's*longer*baseline*' oscillation*efficiency*increases*(But,*not*too*long*distance...)

Astrophysical Sites for Neutrino Emission I

- Cosmic-ray: high energy neutrinos (> GeV, TeV or even PeV)
 - Anywhere high energy particles (protons) exist
 - Strong acceleration processes such as shock waves, magnetic fields, and jets are required -> correlation among high energy electromagnetic radiation like X-ray and gamma-ray, ultra-high cosmic-ray, and neutrino emission
 - Atmospheric neutrino: detected
 - Active galaxies (with active galactic nuclei: AGN/blazar): detected
 - Clusters of galaxies & nearby star-burst galaxies: predicted to have negligible detectability (recent work by Prof. Ryu and his students at UNST/CHEA)
 - Other sites?

typically >

Astrophysical Sites for Neutrino Emission II

- Anywhere in the universe where weak interaction occurs!
- Nuclear reactions: low energy neutrinos (< GeV, typically a few tens of MeV)
 - Inside stars -> Solar neutrinos (detected)
 - Supernovae -> SN 1987A (detected)
 - Compact binary mergers (NS-NS or NS-BH): only GW detected -> many predictions (# of models >> # of observed events: very common in astronomy/astrophysics)
 - X-ray bursts: from rp-process. Did not get much attention thus/but worth investigating their potential contribution to detectability
 - Other sites? Carbon-burning massive stars (Red SuperGiants)

Detecting MeV neutrinos from evolved stars

Motivation

Neutrino astronomy, as a part of multi-messenger astronomy, has a great potential for future astronomy

MeV Neutrino sources

Motivation

X-ray burst

Neutron star merger

FIRST IN CHANGE

Alias	SIMBAD ID	Distance [pc]	T _{eff} [K]	Luminosity [L_{\odot}]	Mass [M_{\odot}]
Betelgeuse	alf Ori	168^{+27}_{-15}	3600 ± 200	126000^{+83000}_{-50000}	16.5~19
Antares	alf Sco	170	3660 ± 200	98000 ⁺⁴⁰⁰⁰⁰ -29000	11~14.3
5 Lacertae	5 Lac	505.05	3660 ± 200	17473 ± 3344	5.11 ± 0.18
119 Tauri	119 Tau	550	3820 ± 135	66000^{+21000}_{-20000}	$14.37^{+2.00}_{-2.77}$
NO Aurigae	NO Aur	600	3700	67000	-
V424 Lacertae	V424 Lac	623	3790 ± 110.5	11176.69	-
KQ Puppis	KQ Pup	659	3660 ± 170	59,800	13~20
MZ Puppis	MZ Pup	703	3745 ± 170	19586.643	-
μ Cephei	mu Cep	940^{+140}_{-40}	3551 ± 136	$269000^{+111,000}_{-40,000}$	15~20
V419 Cephei	V419 Cep	941	3660 ± 170	17693.234	-

 Table 1. Red Supergiant Catalog in 1kpc

From what other sources can MeV neutrinos be detected? → Red supergiant? Detection MeV neutrinos: Only Sun, and SN1987A

How can MeV neutrinos be detected?

Number of targets (Detector size)Event rate
$$f \times N \times \sigma(E)$$
Trigger rate $Cross-$
section
 \rightarrow 2) Detector simulation $\times \phi(F)$ Neutrino $+$ energy $\downarrow \lor$) Stellar evolution $+$ Neu.
spectrumspectrum

Neutrino from stars

01 Nuclear reactions (electron and positron capture, and nuclear decays) 02 Thermal processes

UCIIS T

RSG neutrino spectrum (pair-annihilation) – function of T, ρ_e

Neutrino Detectors for ~ MeV neutrinos

Motivation

Hybrid detector (Water based liquid scintillator) – Theia, Askin et al. (2020)

Detector simulations (NuWro + Geant4)

ITLI:2.1

Detector performance

RSG's neutrinos (C-burn) with HD RSG at 200 pc

Summary

1. Neutrino luminosity of RSGs, especially carbon burning stars, is about

~10^{46~48} MeV/s, and each neutrino has energy of ~ 0.7 MeV

- 2. It is currently implausible to observe these neutrinos however, if future detectors based on new technologies such as LAPPD and WbLs were designed to target these low-energy neutrinos, detecting these would be possible in the future.
- 3. The most challenging task remaining will be to define and reduce noise signals.