Characterizing Gravitational Waves from the Hyperbolic Encounter of Two Black Holes

KIM Dongchan, SON Hyeonguk, BAE Yeong-Bok, HYUN Young-Hwan, KANG Gungwon (Physics, Chung-Ang University)

November 26, 2024

73rd Workshop on Gravitational Waves and Numerical Relativity

Introduction

• There are various orbits depending on the eccentricity.

Studies on High-Eccentricity Orbits NR Result

 Gravitational waves from scattering orbits with high eccentricity exhibit different characteristics compared to those from quasi-circular orbits.

Studies on High-Eccentricity Orbits NR Result

• Gravitational waves from scattering orbits with high eccentricity exhibit different characteristics compared to those from quasi-circular orbits.

Studies on High-Eccentricity Orbits Analytical Approach

- et al. 2024] or PN approximations[Cho 2022].
- those obtained through NR.

Studies on high-eccentricity orbits have been conducted using EOB[<u>Andrade</u>

• However, as the eccentricity increases, the results deviate significantly from

Integration of Gravitational Waveforms **Nonlinear Drift**

- We numerically obtain the values for \ddot{h} , and by integrating these values, we can calculate the GW strain h.
- During this process, nonlinear drift occurs.

Integration of Gravitational Waveforms **Nonlinear Drift**

applied to GWs from quasi-circular orbits. ([Hopper et al. 2023])

• [Reisswig et al. 2011] addressed this issue using FFI, but it could only be

Integration of Gravitational Waveforms **Nonlinear Drift**

noise and subtracting it from the waveform.

• We minimized the drift in h by fitting a polynomial function to the background

Comparison Gravitational Waveforms Mass Quadrupole vs Full NR

calculating the mass quadrupole moment.

We can calculate GWs by approximating the orbit as Keplerian motion and

Differences in TD and RD Waveforms

 Trajectory Driven (TD) waveforms and Ringdown (RD) waveforms are expected to exhibit different characteristics depending on the extraction radius, as they originate from different sources.

Differences in TD and RD Waveforms

Psi4 Visualization

to better observe the waveforms in regions with strong fields.

• Ψ_4 on the xy-plane was calculated and visualized. A mean filter was applied

Psi4 Visualization Polar Gaussian Fitting

- We fitted Ψ_4 at a specific time as a linear combination of polar Gaussian functions.

$$f(r,\theta) = A \exp\left[-\left(\frac{r-r_0}{2\sigma_r}\right)^2\right] \exp\left[-\left(\frac{\theta-\theta_0}{2\sigma_\theta}\right)^2\right]$$

Psi4 Visualization Polar Gaussian Fitting

Summary

- two black holes.
- The nonlinear drift resulting from integrating these gravitational waves remains unresolved.
- Using the subtract-by-fitting method, we obtained the h, and the energy radiated, using the mass quadrupole compared to previous result.
- The difference in behavior between the TD waveform and RD waveform at various extraction radii was identified through the ratio of their time delays.
- Ψ_4 was visualized on the xy-plane for further analysis.

• We investigated the characteristics of GWs radiated from the hyperbolic encounter of

calculated through this method, showed better agreement with the results obtained

Thank you!